<u>FINAL</u> <u>AS-BUILT BASELINE</u> <u>MONITORING REPORT (MY0)</u>

HERON STREAM AND WETLAND MITIGATION SITE

Alamance County, North Carolina

DMS Project ID No. 100014 Full Delivery Contract No. 7192 USACE Action ID No. SAW-2017-01471 DWR No. 17-0290 RFP No. 16-006990

> Cape Fear River Basin Cataloging Unit 03030002

Data Collection: February – May 2019 Submission: May 2019

Prepared for:

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1652 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1652

Ms. Lindsay Crocker NC DEQ – Division of Mitigation Services 1652 Mail Service Center Raleigh, North Carolina 27699-1652

Subject: Heron Stream and Wetland Mitigation Site: As-built DMS comment response DMS Contract #: 7192; DMS Project ID: 100014; RFP # 16-006990

General:

1. If RS is petitioning to use as-built for mitigation credits, please provide a memo request to amend the Mitigation Plan and provide detailed information on the differences between Mitigation Plan assets and as-built assets. Add a column to Table 1 (Appendix) to show Mitigation Plan assets. There will likely be questions as to why some of the EII areas changed from the Mitigation Plan. Provide justification in this memo to IRT.

A petitioning letter is attached. In addition, a column was added to Table 1 (Appendix A) containing Mitigation Plan footages.

2. CCPV- Figure 2, label stream reaches on overview map that includes all project polygons and figures 2A-D. Revise stream shown on map to break out by restoration level and label reaches to match Reach ID on Table 1.

Figure 2, and 2A to 2D have been updated.

Specific Comments/Questions:

1. Page 4, last paragraph, the explanation of deviations from Mitigation Plan are great, but do not explain all of the increases in stream footage from Mitigation Plan.

More specific information was added to this paragraph to explain all increases and decreases in stream footage from Mitigation Plan. Specifically, UT 2 was added to the discussion of mitigation footage changes.

2. Appendix Page 3, table 2, add dates of MYO Monitoring.

MYO Monitoring was added to Table 2 (Appendix A).

3. Table 5, Appendix. How is it that you planted 1,297 stems/acre but all your vegetation plots are showing about half that amount? Is this accurate?

The average stems/acre across the Site planted is 1297; however, most of the Site was planted at a density of 680 stems/acre with the exception of the stream-side assemblage and marsh treatment areas, which were planted at a density of 2720 stems/acre.

4. As Built Drawings: please have your engineer and surveyor sign the final as-built plans.

As built drawings and plans have been signed by the engineer and surveyor.

Thank you,

6. NG

Worth Creech

<u>FINAL</u> <u>AS-BUILT BASELINE</u> MONITORING REPORT (MY0)

HERON STREAM AND WETLAND MITIGATION SITE

Alamance County, North Carolina

DMS Project ID No. 100014 Full Delivery Contract No. 7192 USACE Action ID No. SAW-2017-01471 DWR No. 17-0290 RFP No. 16-006990

> Cape Fear River Basin Cataloging Unit 03030002

Data Collection: February – May 2019 Submission: May 2019

Prepared for:

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1652 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1652

Prepared by:

And

Restoration Systems, LLC 1101 Haynes Street, Suite 211 Raleigh, North Carolina 27604 Contact: Worth Creech 919-755-9490 (phone) 919-755-9492 (fax) Axiom Environmental, Inc.

Axiom Environmental, Inc. 218 Snow Avenue Raleigh, North Carolina 27603 Contact: Grant Lewis 919-215-1693 (phone)

TABLE OF CONTENTS

1.0 PROJECT SUMMARY	2
1.1 Project Goals & Objectives	2
1.2 Project Background	4
1.3 PROJECT COMPONENTS AND STRUCTURE	4
1.4 Success Criteria	5
2.0 METHODS	6
2.1 Monitoring	6
3.0 REFERENCES	8

APPENDICES

- Table 1. Project Components and Mitigation Units
- Table 2. Project Activity and Reporting History
- Table 3. Project Contacts Table
- Table 4. Project Attributes Table
- Appendix B. Visual Assessment Data
 - Figure 1. Project Location
 - Figures 2 & 2A-2D. Current Conditions Plan View
 - Vegetation Plot Photographs
- Appendix C. Vegetation Data
 - Table 5. Planted Bare Root Woody Vegetation
 - Table 6. Total Stems by Plot and Species
 - Table 7. Temporary Vegetation Plot Data
 - Table 8. Planted Vegetation Totals
- Appendix D. Stream Geomorphology Data
 - Tables 9A-9G. Baseline Stream Data Summary
 - Tables 10A-10G. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions)
 - Tables 11A-11G. Monitoring Data-Dimensional Morphology Summary (Dimensional Parameters-Cross-sections)

Tables 12A-12G. Monitoring Data-Stream Reach Data Summary

Appendix E. Groundwater Gauge Soil Profiles

- Appendix F. Preconstruction Benthic Data
 - Preconstruction Benthic Results
 - Habitat Assessment Dataforms
- Appendix G. As-built Plan Sheets

1.0 PROJECT SUMMARY

Restoration Systems, LLC has established the North Carolina Division of Mitigation Services (NCDMS) Heron Stream and Wetland Restoration Site (Site).

1.1 Project Goals & Objectives

Project goals were based on the *Cape Fear River Basin Restoration Priorities* (RBRP) report (NCEEP 2009) and on-site preconstruction data collection of channel morphology and function observed during field investigations. The Site is located within Targeted Local Watershed (TLW) 03030002050050. The RBRP report documents benthic ratings vary between "Fair" and "Good-Fair" possibly due to cattle, dairy, and poultry operations. The project is not located in a Regional or Local Watershed Planning Area; however, RBRP goals addressed by project activities are as follows with Site specific information following the RBRP goals in parenthesis.

- 1. Reduce and control sediment inputs (sediment input reduction of 67.3 tons/year);
- 2. Reduce and manage nutrient inputs (livestock removed from streams, elimination of fertilizer application, installation of marsh treatment areas; and a direct reduction of 893.2 pounds of nitrogen and 47.0 pounds of phosphorus per year);

Site specific mitigation goals and objectives were developed through the use of North Carolina Stream Assessment Method (NC SAM) and North Carolina Wetland Assessment Method (NC WAM) analyses of preconstruction and reference stream systems at the Site (NC SFAT 2015 and NC WFAT 2010) (see Table 1).

Stream/Wetland Targeted Funct	ions, Goals, and Objectives		
Targeted Functions	Goals	Objectives	Compatibility of Success Criteria
(1) HYDROLOGY	1	1	T
(2) Flood Flow (Floodplain Access)	• Attenuate flood flow across the Site	• Construct new channel at historic floodplain elevation to restore overbank flows	• BHR not to exceed 1.2
(3) Streamside Area Attenuation	Minimize downstream flooding to the	and restore jurisdictional wetlands	• Document four overbank events in separate monitoring years
(4) Floodplain Access	maximum extent possible.	Plant woody riparian buffer	• Livestock excluded from the easement
(4) Wooded Riparian Buffer	• Connect streams to functioning wetland	Remove livestock	Attain Wetland Hydrology Success Criteria
(4) Microtopography	systems.	 Deep rip floodplain sons to reduce compaction and increase son surface roughness Protect riparian buffers with a perpetual conservation easement 	 Attain Vegetation Success Criteria Conservation Easement recorded
(3) Stream Stability			Cross-section measurements indicate a stable channel with cobble/gravel
(4) Channel Stability			substrate
(4) Chainer Stabinty	• Increase stream stability within the Site	Construct channels with proper pattern, dimension, and longitudinal profile Permeye livesteels	 Visual documentation of stable channels and structures DUB not to exceed 1.2
	so that channels are neither aggrading nor	 Construct stable channels with cobble/gravel substrate 	BHK hot to exceed 1.2 ER of 1.4 or greater
(4) Sediment Transport	degrading.	 Plant woody riparian buffer 	• $< 10\%$ change in BHR and FR in any given year
(1) Seament Transport			 Livestock excluded from the easement
			Attain Vegetation Success Criteria
(1) WATER QUALITY			
(2) Streamside Area Vegetation		Remove livestock and reduce agricultural land/inputs	
(3) Upland Pollutant Filtration		Install marsh treatment areas	
(3) Thermoregulation	• Remove direct nutrient and pollutant	Plant woody riparian buffer	Livestock excluded from the easement
(2) Indicators of Stressors	inputs from the Site and reduce	Restore/enhance jurisdictional wetlands adjacent to Site streams	Attain Wetland Hydrology Success Criteria
	contributions to downstream waters.	Provide surface roughness through deep ripping/plowing	Attain Vegetation Success Criteria
Wetland Particulate Change	_	Restore overbank flooding by establishing proper channel dynamics	
Wetland Physical Change		Cessation of municipal land application	
(1) HABITAT			
(2) In-stream Habitat			
(3) Substrate	_		
(3) Stream Stability		Construct stable channels with cobble/gravel substrate	• Cross spation manuformant indicate a stable shannel with aphble/gravel substrate
(3) In-Stream Habitat	_	Plant woody riparian buffer to provide organic matter and shade	 Visual documentation of stable channels and in-stream structures
(2) Stream-side Habitat	• Improve instream and stream-side	• Construct new channel at historic floodplain elevation to restore overbank flows and plant woody riparian buffer	Attain Wetland Hydrology Success Criteria
(3) Stream-side Habitat		 Protect riparian buffers with a perpetual conservation easement Restore/enhance jurisdictional wetlands adjacent to Site streams 	Attain Vegetation Success CriteriaConservation Easement recorded
(3) Thermoregulation	_	- Restore enhance jurisdictional wetlands aujacent to Site su cams	
Wetland Landscape Patch Structure	_		
Wetland Vegetation Composition			

1.2 Project Background

The Heron Stream and Wetland Mitigation Site (hereafter referred to as the "Site") encompasses a 17.64-acre easement along warm water, unnamed tributaries to Pine Hill Branch and unnamed tributaries to South Fork Cane Creek. The Site is located approximately 4 miles southeast of Snow Camp and 4.5 miles north of Silk Hope in southern Alamance County near the Chatham County line (Figure 1, Appendix A).

Prior to construction, Site land use consisted of disturbed forest and agricultural land used for livestock grazing and hay production. Livestock had unrestricted access to Site streams, which had been cleared, dredged of cobble substrate, straightened, trampled by livestock, eroded vertically and laterally, and received extensive sediment and nutrient inputs from stream banks and adjacent pastures. Approximately 62 percent of the stream channel had been degraded contributing to sediment export from the Site resulting from mechanical processes such as livestock hoof shear. In addition, streamside wetlands were cleared and drained by channel downcutting and land uses. Preconstruction Site conditions resulted in degraded water quality, a loss of aquatic habitat, reduced nutrient and sediment retention, and unstable channel characteristics (loss of horizontal flow vectors that maintain pools and an increase in erosive forces to channel bed and banks). Site restoration activities restored riffle-pool morphology, aided in energy dissipation, increased aquatic habitat, stabilized channel banks, and greatly reduced sediment loss from channel banks.

1.3 Project Components and Structure

Proposed Site restoration activities generated 5293 Stream Mitigation Units (SMUs) and 0.66 Wetland Mitigation Units (WMUs) as the result of the following.

- 4068 linear feet of Priority I stream restoration
- 1184 linear feet of stream enhancement (Level I)
- 1090 linear feet of stream enhancement (Level II)
- 0.35 acre of riparian wetland restoration
- 0.61 acre of riparian wetland enhancement

Additional activities that occurred at the Site included the following.

- Installation of six marsh treatment areas throughout the Site.
- Fencing the entire conservation easement by leaving some pre-existing fencing, removing fencing, and installing additional fencing.
- Planting 12 acres of the Site with 16,000 stems (planted species and densities by zone are included in Table 5 [Appendix C]).

Deviations from the construction plans included realignment of UT 1B (adding 20 linear feet to the alignment) due to conflicts with a gas line crossing. The realignment resulted in the reduction of a log vane and alterations to pipe configurations within the crossing. Gas line realignment also affected the length of UT 2 in its lower reaches (shortening the Restoration reach). UT 2 also has minor deviations in the enhancement II reach due to profile elevation alterations to tie to the invert of UT 1B. These profile alterations were included in construction plans, but not included in table

updates of the detailed plan. Profile alterations resulted in the Enhancement (level II)/Restoration initiation point migrating upstream, and thus the length of the Enhancement (Level II) reach (UT 2A) decreased by 39 feet, and the length of the restoration reach (UT 2B) increased by 17 feet.

Minor easement deviations after construction plan development resulted in some stationing changes, most notable at the upper reaches of UT 1A (adding 5 linear feet to the alignment) and UT 8A & UT8B (reducing the alignments by a total of 4 linear feet). The easement variations also affected channel lengths across gas lines, which do not generate mitigation credit. Eight log cross-vanes were not constructed due to contact with bed rock, or conflicts with the gas line. In addition, a marsh treatment area was added to the right bank of UT 6 at a draw that was concentrating surface drainage and scouring the valley walls. No other deviations of significance occurred between construction plans and the as-built condition. In addition, no issues have arisen since construction occurred.

Site design was completed in July 2018. Construction started on November 27, 2018 and ended within a final walkthrough on February 11, 2019. The Site was planted on February 21, 2019. Completed project activities, reporting history, completion dates, project contacts, and background information are summarized in Tables 1-4 (Appendix A).

1.4 Success Criteria

Project success criteria have been established per the October 24, 2016 NC Interagency Review Team *Wilmington District Stream and Wetland Compensatory Mitigation Update*. Monitoring and success criteria relate to project goals and objectives. From a mitigation perspective, several of the goals and objectives are assumed to be functionally elevated by restoration activities without direct measurement. Other goals and objectives will be considered successful upon achieving success criteria. The following table summarizes Site success criteria.

Success Criteria

- All streams must maintain an Ordinary High-Water Mark (OHWM), per RGL 05-05.
- Continuous surface flow must be documented each year for at least 30 consecutive days. Surface water monitoring gauges will be installed in the upper third of all intermittent channels, unless otherwise requested by the IRT.

Streams

- Bank height ratio (BHR) cannot exceed 1.2 at any measured cross-section.
- Entrenchment ratio (ER) must be no less than 2.2 for E- and C-type channels at any measured riffle cross-section. Note: B-type channels may have an ER less than 1.4.
- BHR and ER at any measure riffle cross-section should not change by more than 10% from baseline condition during any given monitoring period.
- The stream project shall remain stable and all other performance standards shall be met through four separate bankfull events, occurring in separate years, during the monitoring years 1-7.

Wetland	Hydrology

• Saturation or inundation within the upper 12 inches of the soil surface for, at a minimum, 10 percent of the growing season, during average climatic conditions. Note: Soil temperature for growing season establishment will be measured daily utilizing a continuous monitoring soil probe. Soil temperature will be measured from mid-February through the end of April (at a minimum).

Vegetation

- Within planted portions of the site, a minimum of 320 stems per acre must be present at year 3; a minimum of 260 stems per acre must be present at year 5; and a minimum of 210 stems per acre must be present at year 7.
- Trees must average 7 feet in height at year 5, and 10 feet in height at year 7 in each plot.
- Planted and volunteer stems are counted, provided they are included in the approved planting list for the site; natural recruits not on the planting list may be considered by the IRT on a case-by-case basis.

2.0 METHODS

Monitoring requirements and success criteria outlined in this plan follow the October 24, 2016 NC Interagency Review Team *Wilmington District Stream and Wetland Compensatory Mitigation Update*. Monitoring will be conducted by Axiom Environmental, Inc. Annual monitoring reports of the data collected will be submitted to the NCDMS by Restoration Systems no later than December 31 of each monitoring year data is collected. The monitoring schedule is summarized in the following table.

Resource	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7
Streams							
Wetlands							
Vegetation							
Macroinvertebrates							
Visual Assessment							
Report Submittal							

Monitoring Schedule

2.1 Monitoring

The monitoring parameters are summarized in the following table.

Monitoring Summary

Stream Parameters				
Parameter	Method	Schedule/Frequency	Number/Extent	Data Collected/Reported
Stream Profile	Full longitudinal survey	As-built (unless otherwise required)	All restored stream channels	Graphic and tabular data.
Stream Dimension	Cross-sections	Years 1, 2, 3, 5, and 7	Total of 37 cross-sections on restored channels	Graphic and tabular data.
Visual Assessments Channel Stability		Yearly	All restored stream channels	Areas of concern to be depicted on a plan view figure with a written assessment and photograph of the area included in the report.
	Additional Cross-sections	Yearly	Only if instability is documented during monitoring	Graphic and tabular data.
Stream Hydrology	Continuous monitoring surface water gauges and/or trail camera	Continuous recording through monitoring period	Total of 10 surface water gauges	Surface water data for each monitoring period as depicted in Figures 10A-10D.
Bankfull Events Continuous monitoring surface water gauges and/or trail camera Continuous recordir monitoring per		Continuous recording through monitoring period	Total of 10 surface water gauges: One gauge on UT1, 2, 3, 6 and 8. Two gauges on UT 5. Three gauges on UT 7	Surface water data for each monitoring period
Visual/Physical Evidence		Continuous through monitoring period	All restored stream channels	Visual evidence, photo documentation, and/or rain data.
Benthic Macroinvertebrates"Qual 4" method described in Standard Operating Procedures for Collection and Analysis of Benthic Macroinvertebrates, Version 5.0Pre- per per (NCDWR 2016)		Pre-construction, Years 3, 5, and 7 during the "index period" referenced in <i>Small</i> <i>Streams Biocriteria</i> <i>Development</i> (NCDWQ 2009)	2 stations (one at the lower end of UT1 and one at the lower end of UT5)	Results* will be presented on a site-by- site basis and to include a list of taxa collected, an enumeration of <i>Ephemeroptera, Plecoptera,</i> and <i>Tricopetera</i> taxa as well as Biotic Index.
		Wetland Param	eters	
Parameter	Method	Schedule/Frequency	Number/Extent	Data Collected/Reported
Wetland Restoration	Groundwater gauges	As-built, Years 1, 2, 3, 4, 5, 6, and 7 throughout the year with the growing season defined as March 1-October 22	6 gauges spread throughout restored wetlands	Soil temperature at the beginning of each monitoring period to verify the start of the growing season, groundwater and rain data for each monitoring period
		Vegetation Parar	neters	
Parameter	Method	Schedule/Frequency	Number/Extent	Data Collected/Reported
Vegetation establishment and	Permanent vegetation plots 0.0247 acre (100 square meters) in size; CVS-EEP Protocol for Recording Vegetation, Version 4.2 (Lee et al. 2008)	As-built, Years 1, 2, 3, 5, and 7	14 plots spread across the Site	Species, height, planted vs. volunteer, stems/acre
Vigor	Annual random vegetation plots, 0.0247 acre (100 square meters) in size	As-built, Years 1, 2, 3, 5, and 7	4 plots randomly selected each year	Species and height

*Benthic Macroinvertebrate sampling data will not be tied to success criteria; however, the data may be used as a tool to observe positive gains to in-stream habitat

3.0 REFERENCES

- Griffith, G.E., J.M. Omernik, J.A. Comstock, M.P. Schafale, W.H. McNab, D.R. Lenat, T.F. MacPherson, J.B. Glover, and V.B. Shelbourne. 2002. Ecoregions of North Carolina and South Carolina. U.S. Geological Survey, Reston, Virginia.
- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation. Version 4.2. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.
- North Carolina Division of Mitigation Services (NCDMS). 2014. Stream and Wetland Mitigation Monitoring Guidelines. North Carolina Department of Environmental Quality, Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2005. Cape Fear River Basinwide Water Quality Plan. Available: https:// https://deq.nc.gov/about/divisions/water-resources/planning/basin-planning/water-resource-plans/cape-fear-2005 [December 8, 2016]. North Carolina Department of Environment and Natural Resources, Raleigh, North Carolina.
- North Carolina Division of Water Resources (NCDWR). 2016. Standard Operating Procedures for Collection and Analysis of Benthic Macroinvertebrates (Version 5.0). (online). Available: <u>https://files.nc.gov/ncdeq/Water%20Quality/Environmental%20Sciences/BAU/NCDWR</u> <u>Macroinvertebrate-SOP-February%202016_final.pdf</u>
- North Carolina Division of Water Quality (NCDWQ). 2009. Small Streams Biocriteria Development. Available: <u>http://portal.ncdenr.org/c/document_library/get_file?uuid=2d54ad23-0345-4d6e-82fd-04005f48eaa7&groupId=38364</u>
- North Carolina Ecosystem Enhancement Program (NCEEP). 2009. Cape Fear River Basin Restoration Priorities 2009 (online). Available : http://portal.ncdenr.org/c/document_library/get_file?uuid=864e82e8-725c-415e-8ed9c72dfcb55012&groupId=60329
- North Carolina Stream Functional Assessment Team. (NC SFAT 2015). N.C. Stream Assessment Method (NC SAM) User Manual. Version 2.1.
- North Carolina Wetland Functional Assessment Team. (NC WFAT 2010). N.C. Wetland Assessment Method (NC WAM) User Manual. Version 4.1.

- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Carolina Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.
- Simon A, Hupp CR. 1986. Geomorphic and Vegetative Recovery Processes Along Modified Tennessee Streams: An Interdisciplinary Approach to Disturbed Fluvial Systems. Forest Hydrology and Watershed Management. IAHS-AISH Publ.167.
- United States Department of Agriculture (USDA). 2016. Web Soil Survey (online). Available: http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx [August 2016].
- United States Department of Agriculture (USDA). 1960. Soil Survey of Alamance County, North Carolina. Soil Conservation Service.

Appendix A Background Tables

Table 1. Project Components and Mitigation UnitsTable 2. Project Activity and Reporting HistoryTable 3. Project Contacts TableTable 4. Project Attributes Table

Reach ID	Stream Stationing/ Wetland Type	Existing Footage/ Acreage	Mitigation Plan Footage/ Acreage	Restoration Footage/ Acreage	Restoration Level	Restoration or Restoration Equivalent	Mitigation Ratio	Mitigation Credits	Comment
UT 1A	(-)0+05 to 04+70	475	470	475	Enhancement (Level I)	475	1.5:1	317	
UT 1B	04+70 to 13+26	753	836	856	Restoration	856-57= 799	1:1	799	57 lf of UT1 is located outside of the conservation easement and therefore is not generating credit
UT 2A	00+00 to 03+04	304	343	304	Enhancement (Level II)	304	2.5:1	122	
UT 2B	03+04 to 03+67	19	46	63	Restoration	63	1:1	63	
UT 3	00+00 to 02+79	269	279	279	Restoration	279	1:1	279	
UT 4	00+00 to 04+50	485	450	450	Restoration	450	1:1	450	
UT 5A	00+00 to 09+52	422	952	952	Restoration	952-52= 900	1:1	900	52 If of UT5 is located outside of the conservation easement and therefore is not generating credit
UT 5B	09+52 to 14+90	538	538	538	Enhancement (Level II)	538	2.5:1	215	
UT 6	00+00 to 07+81	683	781	781	Restoration	781	1:1	781	
UT 7A	00+00 to 02+32	0	232	232	Restoration	232-41= 191	1:1	191	41 If of the UT7 restoration reach is located outside of the conservation easement and therefore is not generating credit
UT 7B	02+32 to 09+96	764	764	764	Enhancement (Level I)	764-55= 709	1.5:1	473	55 If of the UT7 enhancement reach is located outside of the conservation easement and therefore is not generating credit
UT8A	00+04 to 06+09	549	607	605	Restoration	605	1:1	605	
UT 8B	06+09 to 08+57	248	250	248	Enhancement (Level II)	248	2.5:1	99	
Wetland R	Riparian Riverine		0.35	0.35	Restoration	0.35	1:1	0.35	Wetland Restoration
Wetland E	Riparian Riverine	0.61	0.61	0.61	Enhancement	0.61	2:1	0.31	Wetland Enhancement

Table 1. Project Components and Mitigation CreditsHeron Restoration Site

Asbuilt Baseline Monitoring Report (Project No. 100014) Heron Stream and Wetland Restoration Site Alamance County, North Carolina page 2 Restoration Systems, LLC May 2019

Table 1. Project Components and Mitigation Credits (continued)Heron Restoration Site

Length & Area Summations by Mitigation Category				
Restoration Level	Stream (linear footage)	Riparian Wetland (acreage)		
Restoration	4068*	0.35		
Enhancement (Level I)	1184**			
Enhancement (Level II)	1090			
Enhancement		0.61		

*An additional 150 linear feet of stream restoration is located outside of the conservation easement and is therefore not included in this total or in mitigation credit calculations.

**An additional 55 linear feet of stream enhancement (level I) is located outside of the conservation easement and is therefore not included in this total or in mitigation credit calculations.

Overall Assets Summary		
Asset Category	Overall Credits	
Stream	5293	
Riparian Riverine Wetland	0.66	

Table 2. Project Activity and Reporting HistoryHeron Restoration Site

	Data Collection	Completion
Activity or Deliverable	Complete	or Delivery
Technical Proposal (RFP No. 16-006990)	January 11, 2017	January 11, 2017
Institution Date (NCDMS Contract No. 100014)		May 22, 2017
404 Permit		October 10, 2018
Mitigation Plan		July 2018
Construction Plans		July 17, 2018
Site Construction		November 27, 2018-February
		11, 2019
Planting		February 21, 2019
As-built Baseline Monitoring (MY0)	February-March 2019	May 2019

Table 3. Project Contacts TableHeron Restoration Site

iteron nestoration site		
Full Delivery Provider	Restoration Systems	
	1101 Haynes Street, Suite 211	
	Raleigh, North Carolina 27604	
	Worth Creech	
	919-755-9490	
Designer	Axiom Environmental, Inc.	
	218 Snow Avenue	
	Raleigh, NC 27603	
	Grant Lewis	
	919-215-1693	

Table 4. Project Attribute TableHeron Restoration Site

Project Information			
Project Name Heron Restoration Site			
Project County	Alamance County, North Carolina		
Project Area (acres)	17.64		
Project Coordinates (latitude & latitude)	35.853955°N, -79.363458°W		
Planted Area (acres)	12.05		
Project Watershed Summary Information			
Physiographic Province	Piedmont		
Project River Basin	Cape Fear		
USGS HUC for Project (14-digit)	03030002050050		
NCDWR Sub-basin for Project	03-06-04		
Project Drainage Area (acres)	14 to 96		
Percentage of Project Drainage Area that is			
Impervious	~276		
CGIA Land Use Classification	Managed Herbaceous Cover & Mixed Upland Hardwoods		

Section 4. Project Attribute Table Heron Restoration Site (continued)

		Re	each Summary	Information				
Parameters	UT1	UT2	UT 3	UT4	UT 5	UT6	UT 7	UT 8
Length of reach (linear feet)	1155	363	269	485	907	683	202	1221
Valley Classification & Confinement				Allu	ivial, confined			
Drainage Area (acres)	96.4	7.1	11.7	17.2	38.1	14.1	20.9	30.8
NCDWR Stream ID Score	30.5	22.5	28.5	33.5	27.5	23.5	24.5	27.5
Perennial, Intermittent, Ephemeral	Perennial	Intermittent	Perennial/ Intermittent	Perennial	Perennial/ Intermittent	Perennial/ Intermittent	Intermittent	Perennial
NCDWR Water Quality Classification				W	/S-V, NSW			
Existing Morphological Description (Rosgen 1996)	Cg5	Gf5	Cg5	Eg5	Eg5	Cg5	Cg5	Eg5
Proposed Stream Classification (Rosgen 1996)	C/E 4	Gf 5	C/E 4	C/E 4	C/E 4	C/E 4	Eb4	C/E 4
Existing Evolutionary Stage (Simon and Hupp 1986)	III/IV	I/III/IV	III/IV	II/III	II/III	III/IV	III/IV	II/III
Underlying Mapped Soils	Alamance	silt loam, Geor	geville silt loar	n, Goldston slat loam, Lo	ty silt loam, Hern ocal Alluvial Land	ıdon silt loam, Or d,	ange silt loam, W	orsham sandy
Drainage Class	,	Well-drained, v	vell-drained, w	ell-drained, wel	ll-drained, well d	rained, poorly-dr	ained, poorly-drai	ned
Hydric Soil Status		Nonhyo	lric, nonhydric	, nonhydric, no	nhydric, nonhydr	ic, hydric, hydric	, respectively	
Valley Slope	0.0074	0.0270	0.0222	0.0244	0.0358	0.0300	0.0255	0.0218
FEMA Classification					NA			
Native Vegetation Community			Piedmon	t Alluvial Fore	st/Dry-Mesic Oal	k-Hickory Forest		
Watershed Land Use/Land Cover (Site)		43% f	orest,55% agrie	cultural land, <	2% low density re	esidential/imperv	ious surface	
Watershed Land Use/Land Cover (Cedarock Reference Channel)		65% f	orest, 30% agri	cultural land, <	5% low density r	esidential/imperv	vious surface	
Percent Composition of Exotic Invasive Vegetation					<5%			

Appendix B Visual Assessment Data

Figure 1. Project Location Figures 2 & 2A-2D. Current Conditions Plan View Vegetation Plot Photographs

Heron Asbuilt Vegetation Plots Photos Taken February 25, 2019

Asbuilt Baseline Monitoring Report (Project No. 100014) Heron Stream and Wetland Restoration Site Alamance County, North Carolina Appendices Restoration Systems, LLC May 2019 Heron Asbuilt Vegetation Plots Photos Taken February 25, 2019 (continued)

Appendices Restoration Systems, LLC May 2019

Appendix C Vegetation Data

Table 5. Planted Bare Root Woody VegetationTable 6. Total Stems by Plot and SpeciesTable 7. Temporary Vegetation Plot DataTable 8. Planted Vegetation Totals

Species	Total*
Acres	12.05
Alnus serrulata	500
Asimina triloba	100
Betula nigra	400
Carpinus caroliniana	800
Cephalanthus occidentalis	25
Cercis canadensis	500
Cornus amomum	2500
Diospyros virginiana	350
Fraxinus americana	100
Fraxinus pennsylvanica	2500
Liriodendron tulipifera	125
Nyssa sylvatia	500
Platanus occidentalis	2400
Quercus lyrate	900
Quercus nigra	2000
Quercus phellos	1900
Sambucus canadensis	25
TOTALS	15,625*
Average Stems/Acre	1297

Table 5. Planted Bare Root Woody VegetationHeron Restoration Site

*Live stakes of *Salix nigra* were planted, but are not included in this table.

Table 6. Total Stems by Plot and Species EEP Project Code 17.008. Project Name: Heron Stream and Wetland

													Curren	t Plot D	ata (M)	'0 201 9)									
			17.	008-01-	0001	17.	008-01·	-0002	17.0	008-01-	0003	17.	008-01-	0004	17.0	08-01-	0005	17.0	008-01-	0006	17.0	008-01-	0007	17.0	008-01-	0008
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Alnus serrulata	hazel alder	Shrub	2	2 2	2																			1	1	1
Asimina triloba	pawpaw	Tree	2	2 2	2 2	2	2	2 2	2 1	1	. 1	. 1	1	. 1	. 1	1	1	. 1	. 1	. 1	. 1	1	. 1	2	2	2
Betula nigra	river birch	Tree																								
Carpinus caroliniana	American hornbeam	Tree	1	. 1	. 1	1	. 1	L 1	-			7	7	7 7	,											
Cephalanthus occidentalis	common buttonbush	Shrub																								
Cercis canadensis	eastern redbud	Tree				5		5 5	ò												1	1	. 1	2	2	2
Cornus amomum	silky dogwood	Shrub																						2	2	2
Diospyros virginiana	common persimmon	Tree	7	' 7	' 7				1	1	. 1							1	. 1	. 1	. 4	4	4			
Fraxinus americana	white ash	Tree																								
Fraxinus pennsylvanica	green ash	Tree													1	1	1	. 5	5 5	5 5						
Liriodendron tulipifera	tuliptree	Tree																								
Nyssa sylvatica	blackgum	Tree	1	. 1	. 1				1	1	. 1							1	. 1	. 1	. 2	2	2			
Platanus occidentalis	American sycamore	Tree							1	1	. 1	_			4	4	4	ł						1	1	1
Quercus	oak	Tree							8	8	8	3			2	2	2	. 1	. 1	. 1	. 6	6	6 6	4	4	4
Quercus lyrata	overcup oak	Tree										1	1	. 1	. 2	2	2									
Quercus nigra	water oak	Tree				5		5 5	ò			1	1	. 1	. 1	1	1	-			1	1	. 1	1	1	1
Quercus phellos	willow oak	Tree										1	1	. 1				1	. 1	. 1						
Quercus rubra	northern red oak	Tree																			1	1	. 1			
Sambucus canadensis	Common Elderberry	Shrub																								
Unknown		Shrub or Tree	3	3 3	3										1	1	1				1	1	. 1			
		Stem count	16	5 16	16	13	13	3 13	8 12	12	. 12	2 11	11	. 11	. 12	12	12	. 10	10	10	17	17	/ 17	13	13	13
		size (ares)		1			1			1			1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	6	6 6	4	. 2	4	5	5	5	5 5	5	5	7	7	7	6	6	6 6	8	8	8	7	7	7	
		Stems per ACRE	647.5	647.5	647.5	526.1	526.1	L 526.1	485.6	485.6	485.6	445.2	445.2	445.2	485.6	485.6	485.6	404.7	404.7	404.7	688	688	688	526.1	526.1	526.1

Color for Density

PnoLS = Planted excluding livestakes

Exceeds requirements by 10% Exceeds requirements, but by less than 10% P-all = Planting including livestakes T = All planted and natural recruits including livestakes

Fails to meet requirements, by less than 10% T includes natural recruits

Fails to meet requirements by more than 10%

Table 6. Total Stems by Plot and Species (continued)

EEP Project Code 17.008. Project Name: Heron Stream and Wetland

		_								Current	: Plot D	ata (M۱	/0 2019)							Anr	ual Me	ans
			17.0	08-01-0	0009	17.0	008-01-	0010	17.0	008-01-	0011	17.0	008-01-	0012	17.0	08-01-0	0013	17.0	08-01-	0014	М	YO (201	.9)
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Alnus serrulata	hazel alder	Shrub							1	1	1										4	4	4
Asimina triloba	pawpaw	Tree	1	1	1	1	1	1	. 2	2	2	1	1	1	5	5	5				21	21	21
Betula nigra	river birch	Tree				1	1	1							1	1	1				2	2	2
Carpinus caroliniana	American hornbeam	Tree				3	3	3										1	1	1	13	13	13
Cephalanthus occidentalis	common buttonbush	Shrub	1	1	1																1	1	1
Cercis canadensis	eastern redbud	Tree							2	2	2										10	10	10
Cornus amomum	silky dogwood	Shrub							2	2	2	2	2	2							6	6	6
Diospyros virginiana	common persimmon	Tree	2	2	2				1	1	1				1	1	1	2	2	2	19	19	19
Fraxinus americana	white ash	Tree	3	3	3				2	2	2										5	5	5
Fraxinus pennsylvanica	green ash	Tree							3	3	3	6	6	6							15	15	15
Liriodendron tulipifera	tuliptree	Tree				1	1	1										1	1	1	2	2	2
Nyssa sylvatica	blackgum	Tree	1	1	1	1	1	1	. 1	1	1				2	2	2				10	10	10
Platanus occidentalis	American sycamore	Tree				2	2	2	. 1	1	1	1	1	1	1	1	1				11	11	11
Quercus	oak	Tree	4	4	4				2	2	2	3	3	3				1	1	1	31	31	31
Quercus lyrata	overcup oak	Tree	1	1	1	1	1	1	. 2	2	2				1	1	1				8	8	8
Quercus nigra	water oak	Tree	1	1	1	3	3	3							2	2	2	4	4	4	19	19	19
Quercus phellos	willow oak	Tree				4	4	4				1	1	1				4	4	4	11	11	11
Quercus rubra	northern red oak	Tree																			1	1	1
Sambucus canadensis	Common Elderberry	Shrub										2	2	2							2	2	2
Unknown		Shrub or Tree																			5	5	5
		Stem count	14	14	14	17	17	17	19	19	19	16	16	16	13	13	13	13	13	13	196	196	196
		size (ares)		1			1			1			1			1			1			14	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.35	
		Species count	8	8	8	9	9	9	11	11	11	7	7	7	7	7	7	6	6	6	20	20	20
		Stems per ACRE	566.6	566.6	566.6	688	688	688	768.9	768.9	768.9	647.5	647.5	647.5	526.1	526.1	526.1	526.1	526.1	526.1	566.6	566.6	566.6

Color for Density

PnoLS = Planted excluding livestakes

T includes natural recruits

Exceeds requirements by 10%

P-all = Planting including livestakes T = All planted and natural recruits including livestakes

Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Smaailaa	4	50m x 2m Tempora	ary Plot (Bearing))
Species	T-1 (120 ⁰)	T-2 (280 ⁰)	T-3 (221 ⁰)	T-4 (347 ⁰)
Asimina triloba		3	3	1
Betula nigra				1
Carpinus caroliniana				1
Cercis canadensis	1			3
Cornus amomum	6		2	
Diospyros virginiana	1	3		6
Fraxinus pennsylvanica	1	3	1	1
Liriodendron tulipifera	1			
Nyssa sylvatia				1
Platanus occidentalis	2			
Quercus lyrata		1	3	1
Quercus nigra	2	4	5	1
Quercus phellos	1	5	4	2
Quercus sp.	3		2	1
Total Stems	18	19	20	19
Total Stems/Acre	729	769	810	769

Table 7. Temporary Vegetation Plot DataHeron Restoration Site

Table 8. Planted Vegetation TotalsHeron Restoration Site

Plot #	Planted Stems/Acre	Success Criteria Met?
1	648	Yes
2	526	Yes
3	486	Yes
4	445	Yes
5	486	Yes
6	405	Yes
7	688	Yes
8	526	Yes
9	567	Yes
10	688	Yes
11	769	Yes
12	648	Yes
13	526	Yes
14	526	Yes
T-1	729	Yes
Т-2	769	Yes
T-3	810	Yes
T-4	769	Yes
Average Planted Stems/Acre	612	Yes

Appendix D Stream Geomorphology Data

Tables 9A-9G. Baseline Stream Data Summary Tables 10A-10G. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Tables 11A-11G. Monitoring Data-Dimensional Morphology Summary (Dimensional Parameters-Cross-sections) Tables 12A-12G. Monitoring Data-Stream Reach Data Summary

	Table 9a. Baseline Stream D Project Name/Number (Heron/100014) - Seg Gauge ² Regional Curve Pre-Existing Condition Cec Ind Substrate Rifle Only Idea Map Mod Map														(feet)										
Parameter	Gauge ²	Reg	gional C	urve		Pre	-Existin	g Condi	tion		Ceda	rock Pa	k Ref	. (000	ausey R	lef		Design			Me	onitorin	g Baseli	ne	
Dimension and Substrate - Riffle Only	<u> </u>	LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Max	Min	Mean	Max	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n
Bankfull Width (ft)					4.7	8.5		11.1			8	8.1	12.1	10.7	11	11.3	7.8	8.4	9	8.3	11		13		4
Floodprone Width (ft)					13	20		30			15	18	25	122	131	140	10	75	100	25	100		100		4
Bankfull Mean Depth (ft)					0.5	0.7		1.1			0.8	0.8	1	1.3	1.4	1.4	0.6	0.6	0.7	0.4	0.5		0.6		4
¹ Bankfull Max Depth (ft)					0.8	1.1		2			1.1	1.4	1.4	1.9	2	2	0.7	0.8	1	0.6	0.8		1.1		4
Bankfull Cross Sectional Area (ft ²)			1			5.1						8			14.7		5.1	5.1	5.1	3.7	5.4		7.2		4
Width/Depth Ratio					4.3	14.6		22			8	10.1	15.1	8	9	9	12	14	16	17.4	18.7		36.7		4
Entrenchment Ratio					1.6	2.5		4.3			1.9	2.1	2.2	11	12	13	5.1	8.9	11.1	3	8.3		9.3		4
¹ Bank Height Ratio					1.4	1.9		2.5			1.0	1.8			1.4		1.0	1.0	1.3	1.0	1.0		1.0		4
Profile			•	•				•	•	•		-			•			•	•		•			•	
Riffle Length (ft)																				2.7	19	16	53	11	31
Riffle Slope (ft/ft)											0.01	0.0316	0.0576	0.002	0.01	0.012	0.007	0.009	0.01	0	0.013	0.012	0.048	0.01	31
Pool Length (ft)					No di	stinct rep	etitive pa	ttern of r	ittles and	pools										6	23	20	80	12.9	34
Pool Max depth (ft)						000 10	oraigna	ung dot			1.5	1.8	2.1		2.7		0.8	1.1	1.3	1.5	1.6		2.1		4
Pool Spacing (ft)											25	37	69	22	44	81	25	34	68	25	34		68		34
Pattern																									
Channel Beltwidth (ft)					1						20	23	38	17	30	36	25	34	68	25	34		68		
Radius of Curvature (ft)					1						11	16	27	9	31	113	17	25	85	17	25		85		
Rc:Bankfull width (ft/ft)					No di	stinct rep	etitive pa	ittern of r	iffles and	pools	1.4	2	3.3	0.8	2.8	10.3	2	3	10	2	3		10		
Meander Wavelength (ft)						uue io	Straight	shing act	iviues.		44	68	116	10	63	91	51	72	101	51	72		101		
Meander Width Ratio											2.4	2.8	4.7	1.5	2.7	3.5	3	4	6	3	4		6		
Transport parameters	-	-			-						-						-			-					
Reach Shear Stress (competency) lb/f ²							0.	61										0.19				0.	24		
Max part size (mm) mobilized at bankfull																									
Stream Power (transport capacity) W/m ²																									
Additional Reach Parameters																									
Rosgen Classification							C	35				Eb 4			E5			E/C 4				С	4		
Bankfull Velocity (fps)							3	.8										3.8				3	.6		
Bankfull Discharge (cfs)							19	9.3																	
Valley length (ft)							10	67																	
Channel Thalweg length (ft)							14	33										856				8	56		
Sinuosity (ft)							1	.3				1.2			1.46			1.3				1	.3		
Water Surface Slope (Channel) (ft/ft)							0.0	057				0.0258			0.0053			0.0057				0.0	087		
BF slope (ft/ft)																									
³ Bankfull Floodplain Area (acres)																									
⁴ % of Reach with Eroding Banks							6	1				0			0										
Channel Stability or Habitat Metric																									
Biological or Other																									

1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

					Pro	ject Na	Ta me/Nu	ible 9b. mber (H	Basel Heron/1	line Str 00014)	eam Da) - Segr	ita Sum nent/Re	mary ach: UT	3 (279) feet)										
Parameter	Gauge ²	Reg	jional C	urve		Pre	Existin	g Cond	ition		Ceda	arock Pa	k Ref	с	ausey R	lef		Design			M	onitorin	g Baseli	ne	
Dimension and Substrate - Riffle Only		LL	UL	Ea.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Max	Min	Mean	Max	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n
Bankfull Width (ft)			02	= 9.	3.2	4.5	mou	5.9	05		8	8.1	12.1	10.7	11	11.3	4.1	4.4	4.7	7.7	7.7	mou	7.7	05	1
Floodprone Width (ft)					9	14		21			15	18	25	122	131	140	20	40	60	18	18		18		1
Bankfull Mean Depth (ft)				1	0.2	0.3		0.4			0.8	0.8	1	1.3	1.4	1.4	0.3	0.3	0.3	0.6	0.6		0.6		1
¹ Bankfull Max Depth (ft)					0.5	0.6		0.7			1.1	1.4	1.4	1.9	2	2	0.4	0.4	0.5	1	1		1		1
Bankfull Cross Sectional Area (ft ²)				1		1.4						8			14.7		1.4	1.4	1.4	4.5	4.5		4.5		1
Width/Depth Ratio					8	17.4		29.5			8	10.1	15.1	8	9	9	12	14	16	13.2	13.2		13.2		1
Entrenchment Ratio				1	1.4	2.2		3.8			1.9	2.1	2.2	11	12	13	4.9	9	12.7	2.3	2.3		2.3		1
¹ Bank Height Ratio					1.7	2.2		2.4			1.0	1.8			1.4		1.0	1.0	1.3	1.0	1.0		1.0		1
Profile			•																						
Riffle Length (ft)																				4	11	10	19	4.3	14
Riffle Slope (ft/ft)					No di	stinct ron	otitivo n	attern of i	riffles and	noole	0.01	0.0316	0.0576	0.002	0.01	0.012	0.023	0.031	0.035	0.011	0.029	0.027	0.736	0.017	14
Pool Length (ft)					i vo u	due to	straight	ening ac	tivities.	poola										4	9	8	21	4.9	13
Pool Max depth (ft)								g			1.5	1.8	2.1		2.7		0.4	0.6	0.7	1	1	1	1	0	1
Pool Spacing (ft)											25	37	69	22	44	81	13	18	35	13	18		35		14
Pattern	-		-	-											-	-	1	1	1		-	1	1	1	
Channel Beltwidth (ft)					-						20	23	38	17	30	36	13	18	27	13	18		27		
Radius of Curvature (ft)				-	No di	stinct rep	etitive pa	attern of I	riffles and	pools	11	16	27	y QQ	31	113	9	13	44	9	13		44		
RC:Bankiuli width (I//t)					-	due to	straight	ening ac	tivities.		1.4	2	3.3	0.8	2.8	10.3	2	3	10	2	3		10		<u> </u>
Meander Wavelength (it)					-						44	68	116	10	63	91	26	3/	53	26	37		53		<u> </u>
											2.4	2.0	4./	1.5	2.1	3.0	3	4	0	3	4		0		
Transport parameters																									
Reach Shear Stress (competency) lh/f ²	1				L		1.	42			1			1			r – –	0.34		r –		0.	56		
Max part size (mm) mobilized at bankfull																									
Stream Power (transport capacity) W/m ²														1											
Additional Reach Parameters														1											
Rosgen Classification	I				1		С	a 5			1	Eb 4		1	E5		1	E/C 4		1		C	: 4		
Bankfull Velocity (fps)			[1			3	9.6										3.6				1	.1		
Bankfull Discharge (cfs)								5																	
Valley length (ft)							2	29																	
Channel Thalweg length (ft)							2	47										279				2	79		
Sinuosity (ft)							1.	.07				1.2			1.46			1.15				1.	15		
Water Surface Slope (Channel) (ft/ft)							0.0	207				0.0258			0.0053			0.0193				0.0	176		
BF slope (ft/ft)																									
³ Bankfull Floodplain Area (acres)																									
⁴ % of Reach with Eroding Banks							1	00				0			0										
Channel Stability or Habitat Metric																									
Biological or Other																									

1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USCS gauge in-line with the project reach (added bankfull verification - rare). 3. Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

					Pro	ject Na	Ta me/Nur	ible 9c. mber (ł	Basel	line Str 00014	eam Da) - Segr	ita Sum nent/Re	mary ach: UT	4 (450) feet)										
Parameter	Gauge ²	Reg	jional C	urve		Pre	Existin	g Cond	ition		Ceda	arock Pa	rk Ref	c	ausey R	lef		Design			M	onitorin	g Baseli	ne	
Dimension and Substrate - Riffle Only	1		1.0	Eq	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Max	Min	Mean	Max	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n
Bankfull Width (ft)	-		02	<u> </u>	31	3.8	Mea	4.9	00		8	8.1	12.1	10.7	11	11.3	4.6	5	54	6.5	73	mea	8	00	2
Floodprone Width (ft)					6	15		30			15	18	25	122	131	140	25	50	75	40	40		40		2
Bankfull Mean Depth (ft)					0.4	0.5		0.6			0.8	0.8	1	1.3	1.4	1.4	0.3	0.4	0.4	0.3	0.4		0.5		2
¹ Bankfull Max Depth (ft					0.7	0.8		0.9			1.1	1.4	1.4	1.9	2	2	0.4	0.5	0.6	0.5	0.7		0.8		2
Bankfull Cross Sectional Area (ft ²)						2						8			14.7		1.8	1.8	1.8	2.2	3		3.7		2
Width/Depth Ratio					5.2	7.7		12.3			8	10.1	15.1	8	9	9	12	14	16	17.3	18.3		19.2		2
Entrenchment Ratio					1.3	3.9		6.1			1.9	2.1	2.2	11	12	13	5.4	10	14	5	5.6		6.2		2
¹ Bank Height Ratio					1.3	2.3		4.0			1.0	1.8			1.4		1.0	1.0	1.3	1.0	1.0		1.0		2
Profile											•			•											
Riffle Length (ft)													1							4	9	9	20	3.5	23
Riffle Slope (ft/ft)					No di	stinct ron	otitivo na	attern of i	riffles and		0.01	0.0316	0.0576	0.002	0.01	0.012	0.037	0.05	0.056	0	0.021	0.017	0.061	0.014	23
Pool Length (ft)					i vo u	due to	straight	ening ac	tivities.	i poola										4	10	10	18	3.5	22
Pool Max depth (ft)								g			1.5	1.8	2.1		2.7		0.5	0.7	0.8	1.1	1.3		1.4		2
Pool Spacing (ft)											25	37	69	22	44	81	15	20	40	15	20		40		22
Pattern												-	r		1	1	r		1	1			r	.	
Channel Beltwidth (ft)					-						20	23	38	17	30	36	15	20	30	15	20		30		ļ
Radius of Curvature (ft)					No di	stinct rep	etitive pa	attern of I	riffles and	l pools	11	16	27	9	31	113	10	15	50	10	15		50		ł
RC:Bankiuli width (1911)					-	due to	straight	ening ac	tivities.		1.4	2	3.3	0.8	2.8	10.3	2	3	10	2	3		10		<u> </u>
Moonder Wavelength (It)					-						44	68	116	10	63	91	30	43	60	30	43		60		<u> </u>
											2.4	2.0	4.7	1.5	2.1	3.0	3	4	0	3	4		0		
Transport parameters																									-
Reach Shear Stress (competency) lb/#					1		2.	79			1			1				0.6		I		0.	59		
Max part size (mm) mobilized at bankful								-														-			
Stream Power (transport capacity) W/m ²														1											
Additional Reach Parameters											I			<u>I</u>			<u> </u>								
Rosgen Classification							E	a 5				Eb 4			E5			E/C 4				C	4		
Bankfull Velocity (fps)			1	1			3	9.7										4				2	.4		
Bankfull Discharge (cfs)							7	.3																	
Valley length (ft)							3	91																	
Channel Thalweg length (ft)							4	28										450				4	50		
Sinuosity (ft)							1.	.09				1.2			1.46			1.15				1.	15		
Water Surface Slope (Channel) (ft/ft)							0.0	283				0.0258			0.0053			0.3111				0.0	254		
BF slope (ft/ft)														l											
³ Bankfull Floodplain Area (acres)																									
⁴ % of Reach with Eroding Banks							5	56				0			0										
Channel Stability or Habitat Metric																									
Biological or Other																									

1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USCS gauge in-line with the project reach (added bankfull verification - rare). 3. Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

					Pro	iect Na	Ta me/Nu	ible 9d. mber (l	Basel	line Str 00014	eam Da) - Segr	ita Sum nent/Re	mary ach: UT	5 (952	(feet)										
Parameter	Gauge ²	Reg	jional C	urve		Pre	-Existin	g Cond	ition		Ceda	arock Pa	rk Ref	c	ausey R	lef		Design	I		M	onitorin	g Baseli	ine	
Dimension and Substrate - Riffle Only	1		1.0	Ea	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Max	Min	Mean	Max	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n
Bankfull Width (ft)			0L	∟ q.	2.5	3.7	IVIEU	6	50		8	8.1	12.1	10.7	11	11.3	4.6	5	5.4	1 9	69	wied	8.1	00	1
Floodprone Width (ft)					4	12		30			15	18	25	122	131	140	25	50	75	40	40		40		4
Bankfull Mean Depth (ft)					0.3	0.5		0.6			0.8	0.8	1	1.3	1.4	1.4	0.3	0.4	0.4	0.3	0.4		0.5		4
¹ Bankfull Max Depth (ft)					0.5	0.8		0.9			1.1	1.4	1.4	1.9	2	2	0.4	0.5	0.6	0.5	0.7		0.8		4
Bankfull Cross Sectional Area (ft ²)						1.6						8		-	14.7		1.8	1.8	1.8	1.9	2.4		3.7		4
Width/Depth Ratio					3.6	8.8		20			8	10.1	15.1	8	9	9	12	14	16	12.6	18.3		20.9		4
Entrenchment Ratio					1.4	3.1		7.3			1.9	2.1	2.2	11	12	13	5.4	10	14	4.9	5.9		8.2		4
¹ Bank Height Ratio					1.3	1.5		2.0			1.0	1.8			1.4		1.0	1.0	1.3	1.0	1.0		1.0		4
Profile																									
Riffle Length (ft)												1								3	11	9	49	8.4	41
Riffle Slope (ft/ft)					Nia di						0.01	0.0316	0.0576	0.002	0.01	0.012	0.037	0.05	0.056	0.004	0.028	0.027	0.051	0.01	41
Pool Length (ft)					INO GI	due to	etitive pa	attern or i ening ac	tivities	pools										4	12	10	59	8.5	41
Pool Max depth (ft)						000 10	Jonaigin	ching do	aviaco.		1.5	1.8	2.1		2.7		0.5	0.7	0.8	0.8	1		1.1		4
Pool Spacing (ft)											25	37	69	22	44	81	15	20	40	15	20		40		41
Pattern											-		1	-	T	T	•	1	-		1	T	T	T	
Channel Beltwidth (ft)											20	23	38	17	30	36	15	20	30	15	20		30		
Radius of Curvature (ft)					No di	stinct rep	etitive pa	attern of i	riffles and	pools	11	16	27	9	31	113	10	15	50	10	15		50		
Rc:Bankfull width (ft/ft)						due to	straight	ening ac	tivities.		1.4	2	3.3	0.8	2.8	10.3	2	3	10	2	3		10		-
Meander Wavelength (ft)											44	68	116	10	63	91	30	43	60	30	43		60		
Meander Width Ratio											2.4	2.8	4.7	1.5	2.7	3.5	3	4	6	3	4		6		
Transport parameters																									
Beach Shear Stress (compatency) lh #2	1						2	79			1			1			1	0.6		1		0	5		
Max part size (mm) mobilized at bankful							2.	10										0.0							
Ctracers Device (tracers est see a site) W/m ²					-																				
Stream Power (transport capacity) w/m	<u> </u>										<u> </u>			I			I			Į					_
Additional Reach Parameters	I							a 5				Eb 4			E5		r –	E/C 4		T		E/	<u>C 4</u>		
Bankfull Velocity (fps)			1					95 10				LD 4			25			E/C 4				E/	13		
Bankfull Discharge (cfs)							5	5														2			
Valley length (ft)							5	79																	
Channel Thalweg length (ft)							6	05										952				9	52		
Sinuosity (ft)							1.	.04				1.2			1.46			1.15				1.	15		
Water Surface Slope (Channel) (ft/ft)							0.0	372				0.0258			0.0053			0.3111				0.0	256		
BF slope (ft/ft)																									
³ Bankfull Floodplain Area (acres)																									
⁴ % of Reach with Eroding Banks							Ę	50				0		1	0							_			
Channel Stability or Habitat Metric																									
Biological or Other														1											

1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USCS gauge in-line with the project reach (added bankfull verification - rare). 3. Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.
					Pro	ject Na	Ta me/Nui	ible 9e. mber (H	Basel Heron/1	line Str 00014)	eam Da) - Segr	ata Sum nent/Re	mary ach: UT	6 (781	feet)										
Parameter	Gauge ²	Reg	jional C	urve		Pre	Existin	g Cond	ition		Ceda	arock Pa	rk Ref	с	ausey R	lef		Design			M	onitorin	g Baseli	ne	
Dimension and Substrate - Riffle Only	Г — Т		UI	Fa	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Max	Min	Mean	Max	Min	Med	Max	Min	Mean	Med	Max	SD⁵	n
Bankfull Width (ft)			02	= 4.	4.6	6.4	mou	9.6	05		8	8.1	12.1	10.7	11	11.3	4.2	4.6	4.9	6.1	6.5	mou	6.8	0.5	2
Floodprone Width (ft)					7	16		46			15	18	25	122	131	140	25	50	75	40	40		40		2
Bankfull Mean Depth (ft)					0.2	0.3		0.3			0.8	0.8	1	1.3	1.4	1.4	0.3	0.3	0.4	0.4	0.4		0.5		2
¹ Bankfull Max Depth (ft)					0.4	0.5		0.8			1.1	1.4	1.4	1.9	2	2	0.4	0.5	0.5	0.6	0.8		0.9		2
Bankfull Cross Sectional Area (ft ²)						1.5						8			14.7		1.5	1.5	1.5	2.2	2.9		3.5		2
Width/Depth Ratio					15.3	26.7		48			8	10.1	15.1	8	9	9	12	14	16	13.2	15.1		16.9		2
Entrenchment Ratio					1.1	2.4		4.8			1.9	2.1	2.2	11	12	13	5.9	10.9	15.3	5.9	6.2		6.6		2
¹ Bank Height Ratio				1	3.7	5.0		7.5			1.0	1.8			1.4		1.0	1.0	1.3	1.0	1.0		1.0		2
Profile	•										•			•											
Riffle Length (ft)				1									1							2	10	7	47	8.8	33
Riffle Slope (ft/ft)					No di	stinct ron	otitivo n	attern of i	riffles and	noole	0.01	0.0316	0.0576	0.002	0.01	0.012	0.031	0.042	0.047	0.001	0.028	0.024	0.126	0.021	33
Pool Length (ft)					NO GI	due to	straight	ening ac	tivities.	poola										4	12	12	18	3.7	33
Pool Max depth (ft)								g			1.5	1.8	2.1		2.7		0.4	0.6	0.7	1	1.2		1.3		2
Pool Spacing (ft)	<u> </u>										25	37	69	22	44	81	13.7	18.3	36.7	14	18		37		33
Pattern			-	-								-	1				1	1	1	1		1	1		
Channel Beltwidth (ft)					-						20	23	38	17	30	36	13.7	18.3	36.7	14	18		37		<u> </u>
Radius of Curvature (ft)				-	No di	stinct rep	etitive pa	attern of I	riffles and	pools	11	16	27	9	31	113	9	14	46	9	14		46		
RC:Bankiuli width (I//t)					-	due to	straight	ening ac	tivities.		1.4	2	3.3	0.8	2.8	10.3	2	3	10	2	3		10		
Moonder Width Patio											44	08	110	10	03	91	21	39	55	21	39		55		
Wealder Width Ratio											2.4	2.0	4./	1.5	2.1	5.5	3	4	0	3	4		0		
Transport parameters																									
Reach Shear Stress (competency) lb/f ²	1				1		14	.18			1						I	0.47		1		0.	56		
Max part size (mm) mobilized at bankfull								-										-				-			
Stream Power (transport capacity) W/m ²																									
Additional Reach Parameters														I											
Rosgen Classification							С	a 5				Eb 4			E5			E/C 4				C	4		
Bankfull Velocity (fps)				1			3	9.5										3.5				1	.8		
Bankfull Discharge (cfs)							5	i.2																	
Valley length (ft)							4	86																	
Channel Thalweg length (ft)							5	22										781				7	81		
Sinuosity (ft)							1.	.07				1.2			1.46			1.15				1.	15		
Water Surface Slope (Channel) (ft/ft)							0.0	028				0.0258			0.0053			0.0261				0.0	225		
BF slope (ft/ft)														l											
³ Bankfull Floodplain Area (acres)																									
⁴ % of Reach with Eroding Banks							6	68				0			0										_
Channel Stability or Habitat Metric																									
Biological or Other																									

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USCS gauge in-line with the project reach (added bankfull verification - rare). 3. Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

					Pro	iect Na	Ta me/Nu	able 9f. mber (H	Basel Heron/1	ine Stro 00014	eam Da) - Sear	ta Sumi nent/Re	mary ach: UT	7 (232	(feet)										
Parameter	Gauge ²	Reg	jional C	urve		Pre	-Existin	ig Cond	ition		Ceda	arock Pa	rk Ref	c	ausey R	lef		Design			м	onitorin	g Baseli	ine	
Dimension and Substrate - Riffle Only			1.0	Eq	Min	Mean	Med	Max	SD2	n	Min	Mean	Max	Min	Mean	Max	Min	Med	Max	Min	Mean	Med	Max	SD5	n
Bankfull Width (ft)	-		02	<u> </u>	4 1	53	mea	6.7	00		8	8.1	12.1	10.7	11	11.3	49	53	5.7	6.2	6.6	mea	7.8	00	4
Floodprone Width (ft)					7	13		29			15	18	25	122	131	140	25	50	75	10	20		20		4
Bankfull Mean Depth (ft)					0.3	0.4		0.5			0.8	0.8	1	1.3	1.4	1.4	0.4	0.4	0.4	0.3	0.4		0.5		4
¹ Bankfull Max Depth (ft)					0.4	0.6		0.8			1.1	1.4	1.4	1.9	2	2	0.5	0.5	0.6	0.5	0.6		0.7		4
Bankfull Cross Sectional Area (ft ²)						2						8			14.7		2	2	2	1.8	2.7		3.3		4
Width/Depth Ratio					8.2	14.5		22.3			8	10.1	15.1	8	9	9	12	14	16	12.8	18.5		24.2		4
Entrenchment Ratio					1.7	2.4		5.2			1.9	2.1	2.2	11	12	13	5	9	13	1.6	2.8		3.1		4
¹ Bank Height Ratio					1.8	2.5		4.1			1.0	1.8			1.4		1.0	1.0	1.3	1.0	1.0		1.0		4
Profile											•			•											
Riffle Length (ft)													1					1		3	13	10	75	13	42
Riffle Slope (ft/ft)					No di	stinct ron	otitivo n	attern of i	riffles and		0.01	0.0316	0.0576	0.002	0.01	0.012	0.027	0.036	0.04	0.006	0.029	0.029	0.056	0.011	42
Pool Length (ft)					INO UI	due to	straight	ening ac	tivities.	i poola										3	9	9	14	2.6	41
Pool Max depth (ft)											1.5	1.8	2.1		2.7		1.3	1.9	2.1	1	1.1		1.5		3
Pool Spacing (ft)											25	37	69	22	44	81	16	21	42	16	21		42		42
Pattern												-	r		1	1	r	1	1	-		1	r	1	
Channel Beltwidth (ft)					-						20	23	38	17	30	36	16	21	32	16	21		32		
Radius of Curvature (ft)					No di	stinct rep	etitive pa	attern of I	riffles and	l pools	11	16	27	9	31	113	10	16	53	10	16		53		
RC:Bankiuli width (1711)					-	due to	o straight	ening ac	tivities.		1.4	2	3.3	0.8	2.8	10.3	2	3	10	2	3		10		
Moonder Wavelength (II)					-						44	68	116	10	63	91	31	45	64	31	45		64		
											2.4	2.0	4./	1.5	2.1	3.0	3	4	0	3	4		0		
Transport parameters																									-
Reach Shear Stress (competency) lb/f ²	1				L		2	.36			1			1			r – –	0.45		Г		0.	61		
Max part size (mm) mobilized at bankful																									
Stream Power (transport capacity) W/m ²														1											
Additional Reach Parameters														1											
Rosgen Classification	1				1		С	a 5			1	Eb 4		1	E5		1	Eb 4		T		C	h 4		
Bankfull Velocity (fps)			[1			3	<u>3.5</u>										3.5				2	.6		
Bankfull Discharge (cfs)								7															-		
Valley length (ft)							7	55																	
Channel Thalweg length (ft)							7	78										232				2	32		
Sinuosity (ft)							1.	.03				1.2			1.46			1.15				1.	15		
Water Surface Slope (Channel) (ft/ft)							0.0	248				0.0258			0.0053			0.0222				0.0	268		
BF slope (ft/ft)																									
³ Bankfull Floodplain Area (acres)																									
⁴ % of Reach with Eroding Banks							7	76				0			0										
Channel Stability or Habitat Metric																									
Biological or Other																									

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USCS gauge in-line with the project reach (added bankfull verification - rare). 3. Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

					Pro	ject Na	Ta me/Nu	ible 9g. mber (H	Basel Heron/1	line Str 00014)	eam Da) - Segr	ata Sum nent/Re	mary ach: UT	8 (605	i feet)										
Parameter	Gauge ²	Reg	jional C	urve		Pre	Existin	g Cond	ition		Ceda	arock Pa	rk Ref	с	ausey R	lef		Design			м	onitorin	g Baseli	ine	
Dimension and Substrate - Riffle Only		LL	UL	Ea.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Max	Min	Mean	Max	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n
Bankfull Width (ft)				- 1.	4.2	5.1		6.1			8	8.1	12.1	10.7	11	11.3	5.5	5.9	6.3	6.5	7.9		9.3		2
Floodprone Width (ft)					5	15		30			15	18	25	122	131	140	25	50	75	20	30		40		2
Bankfull Mean Depth (ft)					0.4	0.5		0.6			0.8	0.8	1	1.3	1.4	1.4	0.4	0.4	0.5	0.4	0.4		0.4		2
¹ Bankfull Max Depth (ft)					0.6	0.8		1			1.1	1.4	1.4	1.9	2	2	0.5	0.6	0.7	0.7	0.7		0.7		2
Bankfull Cross Sectional Area (ft ²)				1		2.5						8			14.7		2.5	2.5	2.5	2.6	3.2		3.7		2
Width/Depth Ratio					7	11.3		15.3			8	10.1	15.1	8	9	9	12	14	16	16.3	19.8		23.4		2
Entrenchment Ratio					1.1	2.7		4.9			1.9	2.1	2.2	11	12	13	4.6	8.5	11.9	2.2	4.2		6.2		2
¹ Bank Height Ratio					1.4	2.3		3.7			1.0	1.8			1.4		1.0	1.0	1.3	1.0	1.0		1.0		2
Profile																									
Riffle Length (ft)																				5	11	11	19	3.4	23
Riffle Slope (ft/ft)					No di	stinct ren	etitive pa	attern of r	riffles and	pools	0.01	0.0316	0.0576	0.002	0.01	0.012	0.023	0.03	0.034	0.007	0.02	0.017	0.041	0.009	23
Pool Length (ft)						due to	straight	ening act	tivities.	poolo										6	15	15	24	4.8	23
Pool Max depth (ft)							•	-			1.5	1.8	2.1		2.7		0.5	0.8	0.9	0.9	1.3		1.6		2
Pool Spacing (ft)						_	_	_	_	_	25	37	69	22	44	81	17	24	47	17	24		47		23
Chappel Boltwidth (ft)	1		r	r –								00	20	47	20	20	47	04	20	47	04		20		-
Channel Bellwidth (It) Radius of Currenture (ft)					-						20	23	38	17	30	36	17	24	36	17	24		36		
Re:Bankfull width (ft/ft)				-	No di	stinct rep	etitive pa	attern of r	riffles and	pools	1.4	2	21	9	28	10.3	2	3	- 59 10	2	10		- 59 10		
Meander Wavelength (ft)						due to	straight	ening act	tivities.		44	68	116	10	63	01	35	50	71	35	50		71		
Meander Width Ratio											24	2.8	47	15	27	35	3	4	6	3	4		6		1
											2.7	2.0	4.7	1.0	2.1	0.0	0	4	Ū	0	-		Ū		
Transport parameters																									
Reach Shear Stress (competency) lb/f ²							1.	.85										0.44				0.	32		
Max part size (mm) mobilized at bankful																									
Stream Power (transport capacity) W/m ²																									
Additional Reach Parameters	•				-									•						•					
Rosgen Classification							E	g 5				Eb 4			E5			E/C 4				C	; 4		
Bankfull Velocity (fps)							3	8.6										3.6				2	.8		
Bankfull Discharge (cfs)							ç).1																	
Valley length (ft)							5	20																	
Channel Thalweg length (ft)							5	43										605				6	05		
Sinuosity (ft)							1.	.04				1.2			1.46			1.15				1.	15		
vvater Surface Slope (Channel) (ft/ft)					-		0.0	218				0.0258			0.0053			0.019				0.0	138		
ВЕ Siope (п/п) 3 раски си Биски как (п/п)																									
Banktull Floodplain Area (acres)			_	_							I	0			-				_		_	_	_		
% of Reach with Eroding Banks							8	30			I	U			U										
Channel Stability or Habitat Metric																									
Biological or Other											I			1											

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = For projects with a proximal USCS gauge in-line with the project reach (added bankfull verification - rare). 3. Utilizing XS measurement data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

Table 10a. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Project Name/Number (Heron/100014) - Segment/Reach: UT 1 (856 feet)

Parameter	Pi	e-Existir	ng Condi	ition	Ceo	laroc	k Ref	ferenc	e Rea	ich Data	0	ausey F	Refei	rence	Reacl	n Data			D	esign				As-bui	lt/Bas	seline	
¹ Ri% / Ru% / P% / G% / S%																	60	13	14	13		43	19	19	19		
¹ SC% / Sa% / G% / C% / B% / Be%					9	22	39	18	11		4	54	28	11	1	2											
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)					0.12	4.1	9.8	161	2568		0.32	0.5	0.9	24	116												
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10	29	71				33			66					50	50									25	75		
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0	14	43	43		66		33					100										100					

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design measurements), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-construction distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-section measurements and the longitudinal profile and in the case of ER, visual estimates. For example, the typical ongitudinal profile parmits sampling of the BHR at riffles beyond those subject to cross-sections and therefore can be readily integrated and provide

a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons,

Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Project Name/Number (Heron/100014) - Segment/Reach: UT 3 (279 feet)

Parameter		Pre	-Existing	Conditi	ion	daro	k Re	ferenc	ce Re	each D	ata	C	ausey	Ref	eren	ce R	leach	n Data				Desig	jn		Α	s-built/	/Baseline	1	
¹ Ri% / Ru% / P% / G% / S%																				74	8	9	8	3	55	15	15	15	
¹ SC% / Sa% / G% / C% / B% / Be%						9	22	39	18	1	1		4	54	28		11	1	2										
¹ d16 / d35 / d50 / d84 / d95 / di ^s / di ^s (mm)						0.12	4.1	9.8	161	256	8		0.32	0.5	0.9		24	116											
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10	33	33	33				33			6	6						50	50									100		
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0			33 6	6		66		33						100											100				

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary.

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design measurements), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-construction distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-section measurements and the longitudinal prol ie and in the case of ER, visual estimates. For example, the typical longitudinal prol ie permits sampling of the BHR at rifles beyond those subject to cross-sections and therefore can be readily integrated and provide a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

Table 10c. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Project Name/Number (Heron/100014) - Segment/Reach: UT 4 (450 feet)

Parameter	Pre	e-Existir	ng Co	ondition	Ce	daro	ck Re	eferen	ice F	Reach	h Data	Ca	ausey	Refe	rence	e Rea	ch Data			De	esign				As-bu	lt/Bas	seline	
¹ Ri% / Ru% / P% / G% / S%																		63	12	13	12		48	17	18	17		
¹ SC% / Sa% / G% / C% / B% / Be%					9	22	39	9 18	3	11		4	54	28	11	1	2											
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)					0.12	4.1	9.8	3 16'	1 25	668		0.32	0.5	0.9	24	116												
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10	25	25	50			33				66					50	50										100		
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0	25	25	50		66		33	3					100										100					

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step: Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock: dip = max paye, disp = max subpaye

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary.

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hy drologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design measurements), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-construction distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-section measurements and the longludinal profile and in the case of ER, visual estimates. For example, the typical longludinal profile permits sampling of the BHR at riffles beyond those subject to cross-sections and therefore can be readily integrated and provide a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparison

Table 10d. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Project Name/Number (Heron/100014) - Segment/Reach: UT 5 (952 feet)

Parameter		Pre	-Exis	ting Condit	ion	Ce	daro	ck Re	feren	ce Re	ach Data		Ca	usey Re	efer	ence Re	each	Data			D	esign		Α	s-buil	t/Baseli	ne
¹ Ri% / Ru% / P% / G% / S%																			58	14	14	14	50	17	17	16	
¹ SC% / Sa% / G% / C% / B% / Be%						9	22	39	18	11			4	54	28	11	1	2									
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)						0.12	4.1	9.8	161	2568		0.3	2	0.5 0).9	24 1	16										
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10	20	20	40	20			33			66						50	50									100	
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0		20	20	60		66		33						100									100				

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

The and BR has been addressed in too structure of the source of the sour

the reach. Inside means that the addressions for these parameters should include easi at thom onto the cost-sections and therefore can be ready in a more complete sample distribution for these parameters should include the addressions of the sample. The typical organization profile permits sampling of the should be the same of the same should be the same of the same should be the same shou

Table 10e. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Project Name/Number (Heron/100014) - Segment/Reach: UT 6 (781 feet)

Parameter		Pre-	Existin	g Cond	lition	Ce	daroo	k Ref	erenc	e Rea	ich Data	Ca	usey	Refer	ence	Read	h Dat	a			D	esign			As-buil	/Base	line	
¹ Ri% / Ru% / P% / G% / S%																			64	12	12	12		46 18	18	18		
¹ SC% / Sa% / G% / C% / B% / Be%						9	22	39	18	11		4	54	28	11	1	2											
¹ d16 / d35 / d50 / d84 / d95 / di ^s / di ^s (mm)						0.12	4.1	9.8	161	2568		0.32	0.5	0.9	24	116												
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10	40	20	20	20			33			66					50	50										100		
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0			1	00		66		33					100											100				

Shaded cells indicate that these will typically not be filled in.

1 = Rilfle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary.

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design measurements), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-construction distribution of these parameters, leaving the readericonsumer with a sample that is weighted heavily on the stable sections of

the reach. This mess that the dustributions for these parameters should include data from both the cross-sections and herefore can be readily integrated and provide a more complete sample distribution for these parameters should include data from both the cross-sections and herefore can be readily integrated and provide a more complete sample distribution for these parameters. Herefy providing the distribution encourses in the providence in the cross-sections and herefore can be readily integrated and provide a more complete sample distribution for these parameters. Herefy providing the distribution encourses in the providence in the cross-sections and herefore can be readily integrated and provide a more complete sample distribution for these parameters.

Table 10f. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Project Name/Number (Heron/100014) - Segment/Reach: UT 7 (232 feet)

Parameter	Pre-Existing Condition Ce								ck Re	eferen	ice F	Reach I	Data		Cause	ey R	lefere	ence	Reach Data				Des	sign			ŀ	As-bui	It/Base	əline	
¹ Ri% / Ru% / P% / G% / S%																				70	6	7	8	7		60	13	14	13		
¹ SC% / Sa% / G% / C% / B% / Be%							9	22	39	9 18	3	11		4	54	4	28	11	1 2												
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)							0.12	4.1	9.8	8 161	1 25	68		0.32	0.5	5	0.9	24	116												
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10	57	29	14					33				66						50	50								25	75			
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0		29	71				66		3	3					100	5										100					

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard tranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary.

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design measurements), however, these subsamples have often focused entirely on lacilitating design without providing a thorough pre-construction distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-sections measurements and there doe can be readily integrated and provide a more complete sample distribution for these parameters should include data from both the cross-sections and therefore can be readily integrated and provide a more complete sample distribution for these parameters.

Table 10g. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Project Name/Number (Heron/100014) - Segment/Reach: UT 8 (605 feet)

Parameter		Pr	e-Exis	ting Condi	tion	daroo	k Re	feren	e Re	ach Data	Ca	usey	Refere	nce I	Reach	Data			Des	sign				As-buil	t/Bas	eline		
	1																											
¹ Ri% / Ru% / P% / G% / S%																		60	13	14	13		41	20	20	19		
¹ SC% / Sa% / G% / C% / B% / Be%						9	22	39	18	11		4	54	28	11	1	2											
¹ d16 / d35 / d50 / d84 / d95 / di ^s / di ^s (mm)						0.12	4.1	9.8	161	2568		0.32	0.5	0.9	24	116												
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10	25	25	50				33			66					50	50									50	50		
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0		50		50		66		33					100										100					

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary.

The reset has a large state of the reset of a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

				Та	ble 1	1a. M	onito	ring C)ata -	Dime	nsion	al Mo	rphol	ogy S	Sumn	nary (Dime	nsion	al Pa	ramet	ers –	Cross	s Sec	tions)											
								Proje	ct Na	me/N	umbe	r (He	ron/1	00014) Se	gme	nt/Re	ach: l	JT 1 (856 fe	et)														
		C	Cross S	Section	1 (Poo	l)			С	ross Se	ection 2	2 (Riffle	e)			С	ross S	ection	3 (Riffl	e)			C	ross S	ection	4 (Poc	ol)			С	ross S	ection	5 (Riffl	e)	
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used																																			
Bankfull Width (ft)	9.2							10.7							13.0							8.9							8.3						
Floodprone Width (ft)	NA							100							100							NA							25						
Bankfull Mean Depth (ft)	1.1							0.6							0.4							0.8							0.4						
Bankfull Max Depth (ft)	2.1							0.9							0.7							1.6							0.6						
Bankfull Cross Sectional Area (ft ²)	10.5							6.1							4.6							6.8							3.7						
Bankfull Width/Depth Ratio	NA							18.8							36.7							NA							18.6						
Bankfull Entrenchment Ratio	NA							9.3							7.7							NA							3.0						
Low Bank Height (ft)	2.1							0.9							0.7							1.6							0.6						
Bankfull Bank Height Ratio	1.00	_						1.00							1.00							1.00							1.00						
Cross Sectional Area between end pins (ft ²)																																			
d50 (mm)																																			
		(cross S	Section	6 (Poo	l)			c	ross S	ection	7 (Poo	I)			С	ross S	ection	8 (Riffl	e)															
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+														
Record elevation (datum) used																																			
Bankfull Width (ft)	12.8							9.6							11.2																				1
Floodprone Width (ft)	NA							NA							100																				
Bankfull Mean Depth (ft)	0.7							0.8							0.6																				
Bankfull Max Depth (ft)	1.6							1.5							1.1																				
Bankfull Cross Sectional Area (ft ²)	9.4							8.0							7.2																				
Bankfull Width/Depth Ratio	NA							NA							17.4																				
Bankfull Entrenchment Ratio	NA							NA							8.9																				
Low Bank Height (ft)	1.6							1.5							1.1																				
Bankfull Bank Height Ratio	1.0							1.0							1.0																				
Cross Sectional Area between end pins (ft ²)				1																															1
d50 (mm)																																			

1 = Widths and depths for annual measurements will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a foothole in this should be included that states. "It is uncertain if the monitoring datum has been consistent datum established. If we are accurated the states are accurated to the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission based on a consistent datum id determined to be necessary."

				Та	able 1	1b. N	lonito	ring [)ata -	Dime	ensior	nal Mo	rpho	logy S	Summ	nary (I	Dime	nsion	al Pa	ramet	ers –	Cross	s Sect	ions)							
								Proje	ct Na	me/N	lumbe	er (He	ron/1	00014) Se	gmei	nt/Rea	ach: L	JT 3 (279 fe	et)										
			Cross	Section	1 9 (Poo	ol)			C	ross S	ection	10 (Riff	le)																		
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	2 MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+															1		
Record elevation (datum) used																															
Bankfull Width (ft)	4.2							7.7																							
Floodprone Width (ft)	NA							18																							
Bankfull Mean Depth (ft)	0.7							0.6																						1	
Bankfull Max Depth (ft)	1.0							1.0																							
Bankfull Cross Sectional Area (ft ²)	2.9							4.5																							
Bankfull Width/Depth Ratio	NA							13.2																							
Bankfull Entrenchment Ratio	NA							2.3																						1	
Low Bank Height (ft)	1.0							1.0																							
Bankfull Bank Height Ratio	1.00	_						1.00																							
Cross Sectional Area between end pins (ft ²)																															
d50 (mm)																															
Based on fixed baseline bankfull elevation ¹																															
Record elevation (datum) used																															
Bankfull Width (ft)																														1	
Floodprone Width (ft)																															
Bankfull Mean Depth (ft)																															
Bankfull Max Depth (ft)																															
Bankfull Cross Sectional Area (ft ²)																														1	
Bankfull Width/Depth Ratio																															
Bankfull Entrenchment Ratio																															
Low Bank Height (ft)																														1	
Bankfull Bank Height Ratio																									-					1	
Cross Sectional Area between end pins (ft ²)																															
d50 (mm)																															

1 = Widths and depths for annual measurements will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertainii if the monitoring datum has been consistent datum established. If the performer has influence calculated values. Additional data for a prior performer is being acquired to provide confirmation. Values will be reaculated or a future submission based on a consistent datum if determined to be necessary."

				Та	ble 1	1c. M	onito	ring C Proie	Data -	Dime me/N	nsion	al Mo r (Hei	rphol	ogy S	Summ	ary (l	Dime	nsion ach: I	al Par	ramet 450 fe	ers –	Cross	Sect	tions)									
	1	С	ross S	ection	11 (Poo	ol)		l	C	oss Se	ction 1	2 (Riffl	e)	,0014	/ 00	Cr	oss Se	ction 1	3 (Riff	le)	.01)		Cr	oss Se	ction	14 (Poo	ol)						
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+					
Record elevation (datum) used		1				1	1	1	1	1										1							1	1					
Bankfull Width (ft)	6.0							6.5							8.0							9.1											
Floodprone Width (ft)	NA							40							40							NA											
Bankfull Mean Depth (ft)	0.8							0.3							0.5							0.7											1
Bankfull Max Depth (ft)	1.1							0.5							0.8							1.4											
Bankfull Cross Sectional Area (ft ²)	4.8							2.2							3.7							6.8											
Bankfull Width/Depth Ratio	NA							19.2							17.3							NA											1
Bankfull Entrenchment Ratio	NA							6.2							5.0							NA											
Low Bank Height (ft)	1.1							0.5							0.8							1.4											
Bankfull Bank Height Ratio	1.00							1.00							1.00							1.00											
Cross Sectional Area between end pins (ft ²)																																	
d50 (mm)																																	
Based on fixed baseline bankfull elevation ¹																																	
Record elevation (datum) used																																	
Bankfull Width (ft)																																	
Floodprone Width (ft)																																	
Bankfull Mean Depth (ft)																																	
Bankfull Max Depth (ft)																																	
Bankfull Cross Sectional Area (ft ²)																																	
Bankfull Width/Depth Ratio																																	
Bankfull Entrenchment Ratio																																	
Low Bank Height (ft)																																	I
Bankfull Bank Height Ratio																																	
Cross Sectional Area between end pins (ft ²)																															-	-	
d50 (mm)																																	

1 = Widths and depths for annual measurements will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertainii if the monitoring datum has been consistent datum established. If the performer has influence calculated values. Additional data for a prior performer is being acquired to provide confirmation. Values will be reaculated or a future submission based on a consistent datum if determined to be necessary."

	Table 11d. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters – Cross Sections) Project Name/Number (Heron/100014) Segment/Reach: UT 5 (952 feet) Cross Section 15 (Pool)																																		
	Cross Section 15 (Pool) Cross Section 16 (Riffle) Cross Section 17 (Pool) Cross Section 18 (Riffle) Cross Section 17 (Pool) Cross Section 18 (Riffle) Cross Section 18 (Riffle) Cross Section 17 (Pool) Cross Section 18 (Riffle) Cross Sec																																		
	1	0	cross S	ection	15 (Poo	ol)		I	C	oss Se	ction 1	6 (Riff	le)	00014	/ <u>.</u>	C	ross S	ection	17 (Po	ol)	,01	1	C	oss Se	ction	18 (Riff	le)			С	ross S	ection	19 (Por	ol)	
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used		1	1	1	1	1		1										1								1	1						1		1
Bankfull Width (ft)	4.7				1			6.3							5.4							8.1					1		7.8					1	1
Floodprone Width (ft)	NA							40							NA							40							NA				1	1	1
Bankfull Mean Depth (ft)	0.5							0.3							0.6							0.5							0.4						
Bankfull Max Depth (ft)	0.8	0.8 0.5 1.1 0.8 0.5 2.4 1.9 3.4 3.7 1.1 NA 20.9 NA 17.7 1.1 NA 6.3 NA 14.9 1.1															0.9				1	1	1												
Bankfull Cross Sectional Area (ft ²)	2.4	.8 0.5 1.1 0.8 1.1 .4 1.9 3.4 3.7 1.1 VA 20.9 NA 17.7 17.7 NA 6.3 NA 4.9 17.7															3.3																		
Bankfull Width/Depth Ratio	NA	8 0.5 1.1 0.8 0.6 0.0 4 1.9 3.4 3.7 10 3.4 3.7 10 3.4 10 3.7 10 3.4 10															NA																		
Bankfull Entrenchment Ratio	NA	A 1.9 3.4 3.7 0.0 VA 20.9 NA 17.7 17.7 NA 6.3 NA 4.9 17.7 0.8 0.5 1.1 0.8 17.0															NA																		
Low Bank Height (ft)	0.8	4 1.9 3.4 3.7 1 A 20.9 NA 17.7 1 1 A 6.3 NA 4.9 1 1 A 0.5 1.1 0.8 1 1 .8 1.00 1.00 1.00 1 1 0.8 1																0.9																	
Bankfull Bank Height Ratio	1.00	2.4 1.9 3.4 3.7 1 NA 20.9 NA 17.7 1 NA 6.3 NA 4.9 1 0.8 0.5 1.1 0.8 1 100 1.00 1.00 1.00 1																1.00																	
Cross Sectional Area between end pins (ft ²)	NA 6.3 NA 0.8 0.5 1.1 1.00 1.00 1.00																																		
d50 (mm)																																			
		С	ross S	ection 2	20 (Riff	le)			С	ross Se	ection 2	21 (Poc	ol)			С	ross S	ection 2	22 (Riff	le)															
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+														
Record elevation (datum) used																																			
Bankfull Width (ft)	4.9							5.0							7.4																				
Floodprone Width (ft)	40							NA							40																				
Bankfull Mean Depth (ft)	0.4							0.6							0.4																				
Bankfull Max Depth (ft)	0.6							1.1							0.7																				
Bankfull Cross Sectional Area (ft ²)	1.9							3.1							2.9																				
Bankfull Width/Depth Ratio	12.6							NA							18.9																				
Bankfull Entrenchment Ratio	8.2							NA							5.4																				
Low Bank Height (ft)	0.6							1.1							0.7																				
Bankfull Bank Height Ratio	1.00							1.0							1.0																				
Cross Sectional Area between end pins (ft ²)																																			
d50 (mm)																																			

1 = Widths and depths for annual measurements will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertainii if the monitoring datum has been consistent datum established. If the performer has influence calculated values. Additional data for a prior performer is being acquired to provide confirmation. Values will be reaculated or a future submission based on a consistent datum if determined to be necessary."

				Та	ble 1	1e. M	onito	ring [Proie	Data -	Dime me/N	nsion umbe	al Mo r (Hei	rphol	ogy S	umm) Se	ary (Dimer	nsion ach: l	al Par JT 6 (7	ramet 781 fe	ers – et)	Cross	Sect	ions)									
	T	с	ross S	ection	23 (Po	ol)		l	C	oss Se	ction 2	4 (Riffl	e)		,	C	ross Se	ection 2	25 (Poc	ol)	•.,		Cro	oss Se	ction 2	6 (Riff	le)						
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	, MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	, MY5	MY+					
Record elevation (datum) used																																	
Bankfull Width (ft)	5.6							6.1							5.2							6.8											
Floodprone Width (ft)	NA							40							NA							40											
Bankfull Mean Depth (ft)	0.6							0.4							0.6							0.5											
Bankfull Max Depth (ft)	1.0							0.6							1.3							0.9											
Bankfull Cross Sectional Area (ft ²)	3.6							2.2							3.2							3.5											
Bankfull Width/Depth Ratio	NA							16.9							NA							13.2											
Bankfull Entrenchment Ratio	NA							6.6							NA							5.9											
Low Bank Height (ft)	1.0							0.6							1.3							0.9											
Bankfull Bank Height Ratio	1.00	_						1.00							1.00							1.00											
Cross Sectional Area between end pins (ft ²)																																	
d50 (mm)																																	
Based on fixed baseline bankfull elevation ¹																																	
Record elevation (datum) used																																	
Bankfull Width (ft)																																	
Floodprone Width (ft)																																	
Bankfull Mean Depth (ft)																																	
Bankfull Max Depth (ft)																																	
Bankfull Cross Sectional Area (ft ²)																																	
Bankfull Width/Depth Ratio																																	
Bankfull Entrenchment Ratio																																	
Low Bank Height (ft)																					-										-		
Bankfull Bank Height Ratio																																-	
Cross Sectional Area between end pins (ft ²)																																	
d50 (mm)																																	

1 = Widths and depths for annual measurements will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a foothole in this should be included that states: "It is uncertain if the monitoring datum has been consistent datum established. If we perform the value of the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission based on a consistent datum if determined to be necessary." Additional datum if determined to be necessary."

	Table 11f. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters – Cross Sections) Project Name/Number (Heron/100014) Segment/Reach: UT 7 (232 feet) Cross Section 27 (Pool) Cross Section 28 (Riffle) Cross Section 27 (Pool) Cross Section 28 (Riffle) Cross Section 27 (Pool) Cross Section 28 (Riffle) Cross Section 29 (Pool) Cross Section 30 (Riffle) Cross Section 29 (Pool) Cross Section 29 (Pool)																																		
								Proje	ct Na	me/N	umbe	r (He	ron/1	00014) Se	egme	nt/Re	ach: l	JT 7 (232 fe	et)														
		0	Cross S	Section	27 (Po	ol)			C	ross Se	ction 2	28 (Riff	e)			C	ross S	ection	29 (Po	ol)			Cr	oss Se	ction 3	30 (Riff	le)			С	ross S	ection	31 (Poc	ol)	
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used																																			
Bankfull Width (ft)	7.1							7.8							4.1							6.2							5.3						
Floodprone Width (ft)	NA							20							NA							10							NA						
Bankfull Mean Depth (ft)	0.9							0.4							0.8							0.4							0.6						
Bankfull Max Depth (ft)	1.5	1.5 0.6 1.1 0.5 1.1 6.3 3.0 3.4 2.3 1.1 NA 20.3 NA 16.7 1.6 15 0.6 1.1 0.5 1.1 10 0.5 1.1 1.1 1.1 11 0.5 1.1 1.1 1.1 12 1.1 1.1 1.1 1.1															1.0																		
Bankfull Cross Sectional Area (ft ²)	6.3	.5 0.6 1.1 0.5 1 3.3 3.0 3.4 2.3 1 NA 20.3 NA 16.7 1 NA 2.6 NA 1.6 1 1.5 0.6 1.1 0.5 1															3.0																		
Bankfull Width/Depth Ratio	NA	1.5 0.6 1.1 0.5 0.5 8.3 3.0 3.4 2.3 0 NA 20.3 NA 16.7 0 NA 2.6 NA 1.6 0 1.5 0.6 1.1 0.5 0 100 100 100 100 100															NA																		
Bankfull Entrenchment Ratio	NA	NA 20.3 NA 2.3 1.5 0.6 1.1 0.5 1 1.00 1.00 1.00 1.00 1 0.0															NA						1												
Low Bank Height (ft)	1.5	3.3 3.0 3.4 2.3 1 NA 20.3 NA 16.7 1 NA 2.6 NA 16.6 1 1.5 0.6 1.1 0.5 1 1.00 1.00 1.00 1.00 1																1.0																	
Bankfull Bank Height Ratio	6.3 3.0 3.4 2.3 1 NA 20.3 NA 16.7 1 NA 2.6 NA 16.7 1 1.5 0.6 1.1 0.5 1 1.00 1.00 1.00 1.00 1																1.00																		
Cross Sectional Area between end pins (ft ²)	p NA 16.7 6 o NA 2.6 NA 16.7 6 b) 1.5 0.6 1.1 0.5 6 io 1.00 1.00 1.00 1.00 1.00																																		
d50 (mm)																																			
		С	ross S	ection 3	32 (Riff	le)			Cı	ross Se	ction 3	3 (Riff	e)																						
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+																					
Record elevation (datum) used																																			
Bankfull Width (ft)	6.5							6.6																											
Floodprone Width (ft)	20							20																											
Bankfull Mean Depth (ft)	0.5							0.3																											
Bankfull Max Depth (ft)	0.7							0.5																											
Bankfull Cross Sectional Area (ft ²)	3.3							1.8																											
Bankfull Width/Depth Ratio	12.8							24.2																											
Bankfull Entrenchment Ratio	3.1							3.0																											
Low Bank Height (ft)	0.7							0.5																											
Bankfull Bank Height Ratio	1.00							1.00																											
Cross Sectional Area between end pins (ft ²)																																			
d50 (mm)																																			

1 = Widths and depths for annual measurements will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertainii if the monitoring datum has been consistent datum established. If the performer has influence calculated values. Additional data for a prior performer is being acquired to provide confirmation. Values will be reaculated or a future submission based on a consistent datum if determined to be necessary."

	Table 11g. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters – Cross Sections) Project Name/Number (Heron/100014) Segment/Reach: UT 8 (605 feet)																															
								Proje	ect Na	me/N	umbe	er (He	ron/1	00014) Se	egme	nt/Re	ach:	UT 8 ((605 f	eet)											
		С	ross S	Section	34 (Rif	fle)			C	cross S	ection	35 (Poc	ol)			С	ross S	ection	36 (Rif	fle)			C	ross S	ection	37 (Po	ol)					
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+				
Record elevation (datum) used																																
Bankfull Width (ft)	6.5							7.5							9.3							9.5										
Floodprone Width (ft)	40							NA							20							NA										
Bankfull Mean Depth (ft)	0.4							0.5							0.4							0.8										
Bankfull Max Depth (ft)	0.7							0.9							0.7							1.6										
Bankfull Cross Sectional Area (ft ²)	(t) 0.7 1.6 1.6 (t) 0.7 1.6 1.6 (t) 0.7 7.2 1.6 (t) 0.7 7.2 1.6 (t) 0.7 7.2 1.6 (t) 0.7 1.6 1.6 (t) 0.7 1.6 1.6																															
Bankfull Width/Depth Ratio	16.3							NA							23.4							NA										
Bankfull Entrenchment Ratio	6.2							NA							2.2							NA										
Low Bank Height (ft)	0.7							0.9							0.7							1.6										
Bankfull Bank Height Ratio	1.0							1.0							1.00							1.00										
Cross Sectional Area between end pins (ft ²)																																
d50 (mm)																																
Based on fixed baseline bankfull elevation ¹																																
Record elevation (datum) used																																
Bankfull Width (ft)																																
Floodprone Width (ft)																																
Bankfull Mean Depth (ft)																																
Bankfull Max Depth (ft)																																
Bankfull Cross Sectional Area (ft ²)																																
Bankfull Width/Depth Ratio																																
Bankfull Entrenchment Ratio																																
Low Bank Height (ft)																																
Bankfull Bank Height Ratio																																
Cross Sectional Area between end pins (ft ²)																																
d50 (mm)																						1										

1 = Widths and depths for annual measurements will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

												Р	Exhil	bit Tal	ble 12 e/Num	a. Mo ber (l	nitori Heron	ng Da /10001	ta - S	tream	Reac	h Data ach: L	Sum	mary 356 fee	2 4)											
Parameter			Bas	seline					м	Y-1		· ·		Hum	M	Y-2	ner en	1000	<u>іч, с</u>	Jegine	M	(- 3		00100			M	Y- 4			I		M	- 5		
	1	T	1	1	1 <i>.</i>	T	i	T	1	1		1		1	1	1	Ι.			1	I	1		1		r	r	1	1 .	r		1	1	-		-
Dimension and Substrate - Riffle only	Min	Mean	Med	Max	SD⁴	n	Min	Mean	Med	Max	SD⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD⁴	n	Min	Mean	Med	Max	SD⁴	n
Banktull Width (tt)	8.3	11		13		4	-																													
Floodprone Width (ft)	25	100		100		4	-																													
Bankfull Mean Depth (ft)	0.4	0.5		0.6		4																														
Bankfull Max Depth (ft)	0.6	0.8		1.1		4																														
Bankfull Cross Sectional Area (it)	3.7	5.4		7.2		4	-					-			-	-				-									-							-
Entrenchment Ratio	17.4	18.7		36.7		4	-					-			-	-				-									-							-
Low Bank Height (ft)	3	0.8		9.3		4	-																													
¹ Bank Height Ratio	1.0	1.0		1.0		4	1																													
Profile	1.0	1.0		1.0																																
Riffle Length (ft)	27	10	16	53	11	31		1	1	1	1	1			<u> </u>	<u> </u>															1					
Riffle Slope (ft/ft)	0	0.013	0.012	0.048	0.01	31						1			1	1													1							
Pool Length (ft)	6	23	20	80	12.9	34																														
Pool Max depth (ft)	1.5	1.6		2.1		4																														
Pool Spacing (ft)	25	34		68		34																														
Pattern								Image: state of the state o																												
Channel Beltwidth (ft)	25	34		68	1	1						1																								
Radius of Curvature (ft)	17	25		85												Patte	m data i	vill not t	mically	na collact	ted unle	ee vieual	ih eteb	monsion	eteb le	or profile	data in	dicate								
Rc:Bankfull width (ft/ft)	2	3		10			4 <t< td=""><td>aiuala</td><td>or prome</td><td>uata in</td><td>uicate</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														aiuala	or prome	uata in	uicate												
Meander Wavelength (ft)	51	72		101				Image: Section of the section of t																												
Meander Width Ratio	3	4		6			1 Min Mean Mean Mean Max SU n Min Mean Mean Min Mean Min Mean N 1 Min Mean Max SU n Min Mean Nean N N N N 1 Min Mean Min Min Min Min N </td <td></td>																													
Additional Reach Parameters																																				
Rosgen Classification			(C 4																																
Channel Thalweg length (ft)			8	356																																
Sinuosity (ft)				1.3																																
Water Surface Slope (Channel) (ft/ft)			0.	0087																																_
BF slope (ft/ft)		-	-	-	-				-		-	1		-	1	1				<u> </u>	-	r –				-	-		<u> </u>	-						
³ Ri% / Ru% / P% / G% / S%	43	19	19	19						-			-				_																			_
SC% / Sa% / G% / C% / B% / Be%																																				
³ d16 / d35 / d50 / d84 / d95 /							-										I																			
*% of Reach with Eroding Banks				0																																
Channel Stability or Habitat Metric							I												ļ																	
Biological or Other							1						1						1												•					

													Exhi	bit Ta	ble 12	2b. M	lonito (Horo	ring [n/100	Data	- Str	eam	Reac	h Data	a Sum	mary	ot)											
Baramotor			Pe	aalina			T		N	V 4			Tojec	l Indii	e/Nul		(nero	1/100	1014)) - 3e	gmer	IU/Rea	aun. u	13(4	2/9/10	el)		M	V 4			T		M	VE		
Falameter			Ба	senne			4		IV	11-1			-		N	11-2							- 3					IVI	1-4					IVI	1- 5		
Dimonsion and Substrate - Diffle only	Min	Moon	Ma	i Mov	sD4		Min	Moon	Mod	Max	sp4	n	Min	Moor	Mod	Max	v en	1 n		Min	Moon	Mod	Mox	sD4	n	Min	Moon	Mod	Max	sD4		Min	Moon	Mod	Max	sp4	1.0
Dimension and Substrate - Kine only Rookfull Width (#)	7.7	7 7	i wee		30	1	IVIIII	wear	weu	IVIAA	30		WIIII	ivical	i weu	i ivia/	× 30	- "			wear	weu	IVIAA	30		IVIIII	wear	weu	IVIAA	30		IVIIII	wear	weu	IVIAA	30	- "
Eloodprone Width (ft)	18	18	-	18		1																							1							1	+
Bankfull Mean Depth (ft)	0.6	0.6		0.6		1																															-
¹ Bankfull Max Depth (ft)	1	1		1		1																															-
Bankfull Cross Sectional Area (ft ²)	4.5	4.5		4.5		1																															-
Width/Depth Ratio	13.2	13.2		13.2		1							-																								+
Entrenchment Ratio	2.3	2.3		2.3		1																															1
Low Bank Height (ft)	1	1		1		1																															1
¹ Bank Height Ratio	1.0	1.0		1.0		1																															T
Profile																																					
Riffle Length (ft)	4	11	10	19	4.3	14																															
Riffle Slope (ft/ft)	0.011	0.029	0.02	7 0.736	0.017	14																															
Pool Length (ft)	4	9	8	21	4.9	13																															
Pool Max depth (ft)	1	1	1	1	0	1																															
Pool Spacing (ft)	13	18		35		14									_	_																					
Pattern	. – –	-	-					_	-				_																		_						-
Channel Beltwidth (ft)	13	18	_	27	_	_		_		_		-	_	_	_	_																					
Radius of Curvature (ft)	9	13	-	44				-	-	-		-	_	-	_	Pat	ttern dat	a will no	nt typic:	ally he	collecte	ed unler	ss visual	data di	imensior	nal data	or profile	data in	dicate		-					-	
Rc:Banktull width (tt/tt)	2	3	_	10				_	_	_	_		_	_	_		com dat		, typio		sigr	nificant	shifts fro	m basel	ine	iai data	or prom	outu m	alouto				_				
Meander Wavelength (It)	26	37	-	53	-	-	-	-	-	-	-		-	-	-	_				-	1					T			1		-		-				4
Weander Width Ratio	3	4		6																																	
Additional Boach Baramotors																																					
Rosgen Classification	1	_	_	C 4	_	_	T		_	_	_			_	_	_		_		_	_	_	_	_	_		_	_		_				_	_		
Channel Thalweg length (ft)				279																																	
Sinuosity (ft)				1.15																																	
Water Surface Slope (Channel) (ft/ft)			0	.0176																																	
BF slope (ft/ft)																																					
³ Ri% / Ru% / P% / G% / S%	55	15	15	15																																	
³ SC% / Sa% / G% / C% / B% / Be%																																					
³ d16 / d35 / d50 / d84 / d95 /																																					-
² % of Reach with Eroding Banks				0										1														1						1			
Channel Stability or Hobitat Motio				J			1						+						_							<u> </u>						<u> </u>					
Biological or Other	-						1						+						_							<u> </u>						<u> </u>					
Shaded cells indicate that these will twically not be f	illed in						<u> </u>						-													I						I					

													Exhi	bit Ta	ble 12	2c. M	onitor	ing Da	ata - S	Stream	n Read	ch Dat	a Sum	mary	ct)											
Baramatar			-				T			N 4		г	Tojec	l Naii	e/Nul		(Her Or	1/1000	14)	Seyme			514(4	430 le				× 4			r					
Farameter			Ba	seline			_	_	IV	17-1		_	_		N	11-2	_		-	_	IVI	1-3	_		_		IVI	1-4		_		_	IVI	1-5	_	
Dimension and Calculation D100 and a	1.6.				0.04	1	1.0.			Mari	0.04	1	10.			1.4	0.04		1.6.			Mari	0.04		16.		Maria		0.04		M.		Mad	Mari	0.04	T
Dimension and Substrate - Kine only Rookfull Width (#)	IVIIII G E	viean	i we	ABIVI L	30	2	IVIIII	wear	weu	wax	30	n	IVIIII	wear	i weu	IVIAX	30	n	WIIII	wear	i weu	IVIAX	30	п	IVIIII	wear	weu	IVIAX	30	n	IVIIII	wear	ivieu	IVIAX	30	
Eloodprope Width (ft)	40	1.3		40		2	_	-				-	-				-		-	-	-	-														+
Bankfull Mean Depth (ft)	0.3	0.4		0.5		2							-																							+
¹ Bankfull Max Depth (ft)	0.5	0.7		0.8		2																														-
Bankfull Cross Sectional Area (# ²)	2.2	2		2.7		2							-																							+
Width/Depth Ratio	17.3	18.3		19.2		2																							1			1			1	+
Entrenchment Ratio	5	5.6		6.2		2																														-
Low Bank Height (ft)	0.5	0.7		0.8		2																														1
¹ Bank Height Ratio	1.0	1.0		1.0		2																														
Profile																																				
Riffle Length (ft)	4	9	9	20	3.5	23																														
Riffle Slope (ft/ft)	0	0.021	0.01	7 0.061	0.014	23																														
Pool Length (ft)	4	10	10	18	3.5	22																														
Pool Max depth (ft)	1.1	1.3		1.4		2																														
Pool Spacing (ft)	15	20		40		22									_	_																				
Pattern		-	-					_					_	_			_		_	_	_	_														-
Channel Beltwidth (ft)	15	20		30	_	_		_		_		-	_	_	_														-	_						
Radius of Curvature (ft)	10	15	_	50				-	-	-		-	_	-	_	Patt	ern data	will not	typically	he coller	cted unle	ess visua	l data d	imensio	nal data	or profil	e data in	dicate		-		-			-	-
Rc:Banktull width (tt/tt)	2	3	-	10				_		_	_		_	_	_		ionn data		()pically	Si	gnificant	t shifts fro	om base	line	nui uutu	or prom	5 data in	alouto		_						
Meander Wavelength (ft)	30	43	-	60	-	-	-	-		-	-		-	-	-	-			1		1								_	-						4
Meander Width Ratio	3	4		6																																
Additional Boach Baramotors																																				
Rosgen Classification	1	_	_	C 4	_	_	T		_	_	_			_	_	_		_						_		_			_				_	_		
Channel Thalweg length (ft)				450																																
Sinuosity (ft)				1.15																																
Water Surface Slope (Channel) (ft/ft)			C	.0195																																
BF slope (ft/ft)																																				
³ Ri% / Ru% / P% / G% / S%	48	17	18	17																																
³ SC% / Sa% / G% / C% / B% / Be%																																				
³ d16 / d37 / d50 / d84 / d95 /									1																											
² % of Reach with Eroding Banks				0																						1						1	1	1	1	_
Channel Stability or Habitat Metric	-						1						1						+						1						1					
Biological or Other							1						1																							
Shaded cells indicate that these will twoically not be fi	illed in												-						-																	

													Exhi	bit Ta t Nam	ble 12	2d. Me	onitor	ing Da	ita - S	tream	Reac	h Data	a Sum	mary	ot)											
Baramotor			Ber	alina			1		M	V 4			Tojec	l Indii	e/nul		neror	/1000	14) - 3	begine	M		1 3 (JJZ IE	el)		M	V 4			T		M			
Falameter			Das	senne			4		IV	11-1			-		IV	11-2		1			IVI	1-3			_		IVI	1-4					IVI	1-5		
Dimension and Substrate - Riffle only	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mear	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD ⁴	n
Bankfull Width (ft)	4.9	6.9	_	8.1		4																														
Floodprone Width (ft)	40	40	_	40		4		-		_			_			_	_	_				-	ļ									ļ				-
Banktull Mean Depth (tt)	0.3	0.4		0.5		4		-		-			-		-	_	-	_																	<u> </u>	-
'Bankfull Max Depth (ft)	0.5	0.7	_	0.8		4		-		_			_			_	_	_				-														-
Bankfull Cross Sectional Area (ft ²)	1.9	2.4	_	3.7		4																														
Width/Depth Ratio	12.6	18.3	_	20.9		4				_							_																		<u> </u>	-
Entrenchment Ratio	4.9	5.9		8.2		4			_	_			_			_	_	_																	<u> </u>	
Low Bank Height (ft)	0.5	0.7		0.8		4		_	_			_	_		_	_		_			_	_			_	_				_					<u> </u>	-
Bank Height Ratio	1.0	1.0		1.0		4									_	_	_																			_
Profile			-	-	-	-	-	_	_			-	_		_	_		_				_								_					4	
Riffle Length (ft)	3	11	9	49	8.4	41				_			_	_		_	_	_																		4
Riffle Slope (ft/ft)	0.004	0.028	0.027	0.051	0.01	41		_		_		-	_	_	_	_	_	-		-															<u> </u>	4
Pool Length (ft)	4	12	10	59	8.5	41		_		_		-	_	_	_	_	_	-		-															<u> </u>	
Pool Max depth (ft)	0.8	1		1.1		4		-	_	_	_		_	_	_	_	_		_		_	_			_	_	_								4	
Pool Spacing (ft)	15	20		40		41							_	_	_	_	_		_		_	_			_	_	_								4	
Pattern Channel Beltwidth (ft)	15	20	1	30	T	T	1	1	1	1	1						-																		-	
Radius of Curvature (ft)	10	15		50													_																			
Rc:Bankfull width (ft/ft)	2	3		10												Patt	ern data	will not	ypically b	be collec	ted unle	ess visua	I data, d	imensio	nal data	or profile	e data in	dicate								
Meander Wavelength (ft)	30	43		60																sig	gnificant	shifts fro	om base	line												
Meander Width Ratio	3	4		6																																
Additional Reach Parameters																																				
Rosgen Classification			E	/C 4																																
Channel Thalweg length (ft)			9	952																																
Sinuosity (ft)			1	1.15																																
Water Surface Slope (Channel) (ft/ft)			0.	0256																																
BF slope (ft/ft)									-		_																									
³ Ri% / Ru% / P% / G% / S%	50	17	17	16																																
³ SC% / Sa% / G% / C% / B% / Be%																																				
³ d16 / d35 / d50 / d84 / d95 /																																				
² % of Reach with Eroding Banks				0																																
Channel Stability or Habitat Metric																																				
Biological or Other																																				
Shaded cells indicate that these will typically not be fi	illed in.																																			

													Exhi	bit Ta	ble 12	2e. N	Nonito	ring I	Data	I - Str	ream	Reac	h Data	a Sum	mary	ct)											
Baramotor			Pe	aalina			T		M	V 4			Tojec	l Indii	e/Nul		(nero		0014	- Je	egine	IU/Rea		10(101 10			M	V 4			T		M	V E		
Farameter		_	ва	seiine			_	_	IV	Y-1		_	_		N	/11-2	_		_			IVI	1-3			_		IVI	1-4		_		_	IVI	1-5	_	
Dimension and Calenteria Diffic ante	1.6.				0.04		1.00			Mari	0.04	1	16.					4		M	Maaa	Mad		0.04		1.0				0.04		10.		Maria		0.04	T
Dimension and Substrate - Riffle only	Min	wean	ivied	Max	50	n	IVIIN	Mean	ivied	wax	50	n	MIN	wear	1 Med	i wa	x 50	n	1	MIN	Mean	Med	wax	50	n	Min	wear	Med	Max	50	n	MIN	Mean	ivied	Max	50	n
Eloodprope Width (ft)	40	40	-	40		2		-	1	-	-	-	-	-	-	_	_	-	-				-		-		1	-	-	-	-			-	-		+
Bankfull Mean Depth (ft)	0.4	40		40	1	2										-														1			1			1	+
¹ Bankfull Max Depth (ft)	0.6	0.8		0.0		2																															1
Bankfull Cross Sectional Area (# ²)	2.2	2.0		2.5		2							-				-																				+
Width/Depth Ratio	13.2	15.1		16.9	1	2										-														1			1			1	+
Entrenchment Ratio	5.9	6.2		6.6		2																															1
Low Bank Height (ft)	0.6	0.8		0.9		2																															1
¹ Bank Height Ratio	1.0	1.0		1.0		2																															
Profile																																					
Riffle Length (ft)	2	10	7	47	8.8	33																															
Riffle Slope (ft/ft)	0.001	0.028	0.02	4 0.126	0.021	33																															
Pool Length (ft)	4	12	12	18	3.7	33																															
Pool Max depth (ft)	1	1.2		1.3		2																															1
Pool Spacing (ft)	14	18		37		33									_			_																			1
Pattern			-	-	-			_	-	_			_			_		_																			4
Channel Beltwidth (ft)	14	18	_	37		_		_		_			_	_	_	_														_	_		ļ			ļ	4
Radius of Curvature (ft)	9	14		46	-			-	-	-		-	_	-	_	Pat	ttern dat	a will nr	ot typir	cally he	o collect	ed unle	ss visual	data di	imensio	nal data	or profil	e data in	dicate		-		-			-	4
Rc:Banktull width (tt/tt)	2	3		10	-			-	-	-		-	_	-	_		ttom dat		ortypic	ouny be	sig	nificant	shifts fro	m basel	line		or prom	5 data in	alouto		-		-			-	4
Meander Wavelength (it)	27	39	-	55	-	-	-	-	-	-			-	-	+								1	1	1	1		1	1	-	-						4
Wearder Width Ratio	3	4		6																																	
Additional Boach Baramotors																																					-
Rosgen Classification	1		_	C 4	_	_	T		_		_			_	_	_		_		_	_	_		_	_		_			_				_	_		
Channel Thalweg length (ft)				781																																	_
Sinuosity (ft)				1.15																																	
Water Surface Slope (Channel) (ft/ft)			0	.0225																																	
BF slope (ft/ft)																																					
³ Ri% / Ru% / P% / G% / S%	46	18	18	18																																	
³ SC% / Sa% / G% / C% / B% / Be%																																					1
³ d16 / d35 / d50 / d84 / d95 /																																					
² % of Reach with Eroding Banks				0																													1			1	
Channel Stability or Habitat Metric				-			1						1						-																		
Biological or Other							1						1						-																		
Shaded cells indicate that these will typically not be fi	illed in						-						•																			•					

													Exh	ibit Ta	able 12	2f. M	onitor	ing Da	ata - S	tream	Read	h Dat	a Sum	mary												
												P	rojec	t Nam	e/Nur	nber	(Heroi	n/1000	14) - 3	Segm	ent/Re	each: I	UT 7 (232 fe	et)											
Parameter			Ba	seline					N	IY-1					N	1Y-2					M	IY- 3					м	Y- 4					M	Y- 5		
				-	-		-				-			_		-				-		-				-										
Dimension and Substrate - Riffle only	Min	Mean	n Med	Max	SD^4	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	n Med	Max	SD ⁴	n	Min	Mear	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n
Bankfull Width (ft)	6.2	6.6		7.8		4																														
Floodprone Width (ft)	10	20		20		4									_					_	_															_
Bankfull Mean Depth (ft)	0.3	0.4	_	0.5		4		_	_	_					_		_	_			_	_														_
¹ Bankfull Max Depth (ft)	0.5	0.6		0.7		4								_		_			_			_														_
Bankfull Cross Sectional Area (ft ²)	1.8	2.7		3.3		4																														
Width/Depth Ratio	12.8	18.5		24.2		4																														
Entrenchment Ratio	1.6	2.8		3.1		4								_		_			_			_														_
Low Bank Height (ft)	0.5	0.6	_	0.7		4		_	_	_					_		_	_			_	_														_
¹ Bank Height Ratio	1.0	1.0		1.0		4																														
Profile							_																													
Riffle Length (ft)	3	13	10	75	13	42		_				_	_		_			_	_	_	_	_					_									
Riffle Slope (ft/ft)	0.006	0.029	0.029	0.056	0.011	42		_		_		-		_	_	_	_	_	_	_	_	_	_				-			_						
Pool Length (ft)	3	9	9	14	2.6	41		_		_		-		_	_	_	_	_	_	_	_	_	_				-			_						
Pool Max depth (ft)	1	1.1	_	1.5		3		_	_	_	_		_	_	_	_	_	_	_	_	_	_	_		_	_		_	_	_						
Pool Spacing (ft)	16	21		42		42							-	-	-	_	_	-	-	-	-	-	-	-	-	-		-	-	-	-	-			-	-
Pattern Channel Beltwidth (#)	40	1 04	1	00	1	1	-	-	-	-	1	1	-	-	-	-	_	-	-	-	-	-	-		-	-		-	-	-						4
Channel Beitwidth (it) Bediue of Currenture (#)	10	21	-	32		+		-	-	-			-	-	+	-													-	-	-	-			-	-
Radius of Culvatule (II)	2	3		10				-		-						Pat	tern data	will not	typically	be colle	cted unl	ess visua	al data, d	imensio	nal data	or profile	e data in	dicate		-						
Meander Wavelength (ft)	21	45	-	64	-			-	-	-	-		-	-	+	-				si	gnifican	t shifts fro	om base	line						-	-	+			+	+
Meander Waterchight (it)	3	40		6		1			-					1	-									1												+
	0	·		ÿ																																
Additional Reach Parameters																																				-
Rosgen Classification			(Cb 4			1																													
Channel Thalweg length (ft)				232																																
Sinuosity (ft)				1.15																																
Water Surface Slope (Channel) (ft/ft)			0.	0268																																
BF slope (ft/ft)																																				
³ Ri% / Ru% / P% / G% / S%	60	13	14	13																																
³ SC% / Sa% / G% / C% / B% / Be%																																				
³ d16 / d35 / d50 / d84 / d95 /																																				
² % of Reach with Eroding Banks				0										•														•								
Channel Stability or Habitat Metric													1						1												1					
Biological or Other													1						1												1					
Shaded cells indicate that these will typically not be f	illed in																								-											

													Exhi	bit Ta	ble 12	2g. M	Nonito	ring I	Data	I - Str	ream	Reac	h Data	a Sum	mary	ct)											
Baramatar			-				T			× 4		г	Tojec	l Naii	e/Nul	niber	(Hero	11/100	0014) - Se	egine	IL/Rea) 0 10	005 16				× 4			T					
Farameter			Ba	seline			_	_	IV	Y-1		_	_		N	// 1 -2	_		_			IVI	1-3			_		IVI	1-4		_		_	IVI	1-5	_	
Dimension and Calenteria Diffic ante	1.6.				0.04		1 16.			Mari	0.04	1	16.					4		M	Maaa	Mad		0.04		1.0				0.04		16.		Maria		0.04	1
Dimension and Substrate - Riffle only	Min	Niean	1 IVIE	1 Max	50	n	IVIIN	Mean	Med	wax	SD	n	MIN	wear	1 Med	i wa	x 50	n	1	MIN	Mean	Med	wax	50	n	Min	wear	Med	Max	50	n	Min	Mean	ivied	Max	50	n
Eloodprope Width (ft)	20	20	-	9.3	-	2		-	-	-	-	-	-	-	-	-	_	-	-				-		-		1	-	-		-	-		-			+
Bankfull Mean Depth (ft)	0.4	0.4		40		2																								1			1			1	+
¹ Bankfull Max Depth (ft)	0.7	0.7		0.7		2																															1
Bankfull Cross Sectional Area (# ²)	2.6	2.2		2.7		2							-				-																				+
Width/Depth Ratio	16.3	19.8		23.4		2																								1			1			1	+
Entrenchment Ratio	2.2	4.2		6.2		2																															1
Low Bank Height (ft)	0.7	0.7		0.7		2																															1
¹ Bank Height Ratio	1.0	1.0		1.0		2																															
Profile																																					
Riffle Length (ft)	5	11	11	19	3.4	23																															
Riffle Slope (ft/ft)	0.007	0.02	0.01	7 0.041	0.009	23																															
Pool Length (ft)	6	15	15	24	4.8	23																															
Pool Max depth (ft)	0.9	1.3		1.6		2																															1
Pool Spacing (ft)	17	24		47		23									_	_		_																			1
Pattern		-	-	-				_		_			_	_				_																			4
Channel Beltwidth (ft)	17	24	_	36	_	_		_		_			_	-	_	_														_	_				-		4
Radius of Curvature (ft)	11	18	-	59				-	-	-		-	_	-	_	Pat	ttern dat	a will nr	ot typir	cally he	o collect	ed unle	ss visual	data di	imensio	nal data	or profil	e data in	dicate		-		-			-	4
Rc:Banktull width (tt/tt)	2	3	-	10				-	-	-		-	_	-	_		ttom dat		ortypic	ouny be	sig	nificant	shifts fro	m basel	line		or prom	5 data in	alouto		-		-			-	4
Meander Wavelength (it)	35	50	+	/1	-	-	-	-	-	-			-	-	+	-							1	1	1	1		1	1	-	-						4
Meander Width Ratio	3	4		0																																	
Additional Boach Baramotors																																					-
Rosgen Classification		_	_	C 4	_	_	T		_		_			_	_	_		_		_	_	_		_	_		_			_				_	_		
Channel Thalweg length (ft)				605																																	_
Sinuosity (ft)				1.15																																	
Water Surface Slope (Channel) (ft/ft)			C	.0138																																	
BF slope (ft/ft)																																					
³ Ri% / Ru% / P% / G% / S%	41	20	20	19																																	
³ SC% / Sa% / G% / C% / B% / Be%																																					1
³ d16 / d35 / d50 / d84 / d95 /																																					
² % of Reach with Eroding Banks				0																												1	1		1	1	
Channel Stability or Habitat Metric				-			1						1						-													1					
Biological or Other							1						1						-													1					
Shaded cells indicate that these will typically not be fi	illed in						-						•													•						•					

Appendix E Groundwater Gauge Soil Profiles

218 Snow Avenue Raleigh, North Carolina 27603 919-215-1693

SOIL BORING LOG

Project/Site:	He-un fi-ean's weekland				
County, State:	Alamance, North Carolina				
Sampling Point/ Coordinates:	GW-01				
Investigator:	Po-Kinha				

Notes:	
501	discurbed drive
Card	۱ ۱
Chipper	icia

	Matrix		Mottling		
Depth (inches)	Color	%	Color	%	Texture
0-9	2.51 9-2	460	2.5 4-6	20	SICL
6-30	25+ 4-2	60	2.57 4.6	40	CL
20-35	4:5+1-2	60	2.5 4.4	20	Gill- Sandlike
		· ·	X		

Number:	1233
Signature:	W Grant Leub
Name/Print:	W. Grant Lewis

218 Snow Avenue Raleigh, North Carolina 27603 919-215-1693

Axiom Environmental, Inc.

SOIL BORING LOG

Project/Site:

ð

County, State:

Sampling Point/ Coordinates:

Investigator:

Meran Glocum i We	-(u.,/
Alamanie NC	
GW-02	
Ne-Kinsa/	

<u>Notes</u> :			

1

	Matrix	x	Mottling		Mottling		
Depth (inches)	Color	%	Color	%	Texture		
0-5	10-1-4-3	80	10x-4-6	90	CL		
5-20	10114-2	75	104.4.6	25	L		
20-38	10.y- 4-1	40	104-406	20	C		
· · · · · · · · · · · · · · · · · · ·							

Number:	1233
Signature:	W Grant Leub
Name/Print:	W. Grant Lewis

218 Snow Avenue Raleigh, North Carolina 27603 919-215-1693

Axiom Environmental, Inc.

SOIL BORING LOG

Project/Site:

County, State:

Sampling Point/ Coordinates:

Investigator:

Horan florcam and	Wellaw
Alamanie, NC	
6W-03	
Pr-Kukon	

Notes:		

	Matrix		Mottling		Mottling		
Depth (inches)	Color	%	Color	%	Texture		
0-6	10 yr 4-4	90	ay uly	10	cC		
6= N	104.5-X	80	1dx-4-6	20	0.0		
12-30	(ay-7-1	80	10-4-5	20	5=0		
30L	Supralite	0645					
	[

Number:	1233
Signature:	W Grant Teub
Name/Print:	W. Grant Lewis

218 Snow Avenue Raleigh, North Carolina 27603 919-215-1693

SOIL BORING LOG

Project/Site:

County, State:

Sampling Point/ Coordinates:

Investigator:

HERON Stream/ Wellans
Alamence NC
4-6
P. Petriwsa

Notes:
3 gauge translet
located in old poor
goilgue Game for
Ruch Gause Guprahil,
2"salue water 1
soil profile disturbed -

	Matrix		Mottling		
Depth (inches)	Color	%	Color	%	Texture
0-5	2.54 9-1	60	2.5+6-0	40	5:66
5-10	GIN	80	2.5,4-4	20	61C1_
10-25	81	90	251 4-4	10	S:CL
75-34	2.5-18-2	90	2.5+4.6	10	SIL
34L	GAPPO Rele/	Barach			
	. /				

Number:	1233
Signature:	W Grant Leub
Name/Print:	W. Grant Lewis

Appendix F Preconstruction Benthic Data

Preconstruction Benthic Results Habitat Assessment Dataforms

PA ID NO			51818	51819
STATION			UT-1 Llower	UT-5
DATE			10/2/2018	10/2/2018
SPECIES	T.V.	F.F.G.		
MOLLUSCA				
Bivalvia				
Veneroida				
Sphaeriidae		FC		
Pisidium sp.	6.6	FC	5	
Gastropoda				
Basommatophora				
Physidae				
Physella sp.	8.7	CG	32	
ANNELIDA				
Clitellata				
Oligochaeta		CG		
Tubificida				
Tubificinae w.o.h.c.		CG		3
ARTHROPODA				
Crustacea				
Copepoda	_			
Cyclopoida	_		1	
Isopoda	_			
Asellidae		SH		
Caecidotea sp.	8.4	CG	1	
Lirceus sp.	7.4	CG		1
Amphipoda		CG		
Crangonyctidae	_			
Crangonyx sp.	7.2	CG	12	12
Insecta				
Odonata	_			
Coenagrionidae	_	Р		
Ischnura sp.	9.5		1	1
Corduliidae	_		1	
Coleoptera				
Dytiscidae		Р		
Neoporus carolinus	5		1	1
Diptera	_			
Chironomidae	_			
Chironomus sp.	9.3	CG	3	
Goeldichironomus holoprasinus			15	
Polypedilum illinoense gp.	8.7	SH	2	
Polypedilum scalaenum gp.	8.5	SH		1
Zavrelimyia sp.	8.6	Р		1
Culicidae		FC		

PA ID NO			51818	51819
STATION			UT-1 Llower	UT-5
DATE			10/2/2018	10/2/2018
SPECIES	T.V.	F.F.G.		
Aedes sp.			1	1
TOTAL NO. OF ORGANISMS			75	21
TOTAL NO. OF TAXA			12	8
ΕΡΤ ΤΑΧΑ			0	0
BIOTIC INDEX ASSIGNED VALUES			7.94	7.40

HERO	N	UT-
11.00	1	

3/06 Revision 6

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams

Biological Assessment Unit, DWQ TOTAL SCORE 56 Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in unstructed direction storting above the bridge need and the read right of way. The segment which is assessed should represent	an
stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, se description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descrip select an intermediate score. A final habitat score is determined by adding the results from the different metrics.	lect the tions,
Stream MT- 1 Lower Location/road: MONCAMP (Road Name FORK Rd,) County ALAMANCE	
Date 10-2-18 CC# Basin (APE FOAR BASIN) Subbasin 0303000 205003 Observer(s) Kreff Type of Study: Fish Basinwide Special Study (Describe)	03-06-04)
Latitude 35.853955 Longitude 79.363456 Ecoregion: MT I P Slate Belt Triassic Basin	
Water Quality: Temperature ⁰ C DOmg/l Conductivity (corr.)µS/cm pH	
Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include you estimate driving thru the watershed in watershed land use.	e what
Visible Land Use: <u>3</u> %Forest Z%Residential <u>ACtive Pasture</u> % Active Crops %Fallow Fields % Commercial %Industrial %Other - Describe: %	
Watershed land use : Generation Generation - Animal operations upstream	
Width: (meters) Stream 1-2 Channel (at top of bank) 7 - 4 Stream Depth: (m) Avg 2' Max 12 Max 12 Poo Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m) Image: Channel (at top of bank-first flat surface you stand on): (m) Image: Channel (at top of bank-first flat surface you stand on): (m) Image: Channel (at top of bank-first flat surface you stand on): (m) Image: Channel (at top of bank-first flat surface you stand on): (m) Image: Channel (at top of bank-first flat surface you stand on): (m) Image: Channel (at top of bank-first flat surface you stand on): (m) Image: Channel (at top of bank-first flat surface you stand on): (m) Image: Channel (at top of bank-first flat surface you stand on): (m) Image: Channel (at top of bank-first flat surface you stand on): (m) Image: Channel (at top of bank-first flat surface you stand on): (m) Image: Channel (at top of bank-first flat surface you stand on): (m) Image: Channel (at top of bank-first flat surface you stand on): (m) Image: Channel (at top of bank-first flat surface you stand on): (m) Image: Channel (at top of bank-first flat surface you stand on): (m) Image: Channel (at top of bank-first flat surface you stand on): (m) Image: Channel (at top of bank-first flat surface you stand on): (m) Image: Channel (at top of bank-first flat surface you stand on): (m) Image: Channel (at top of bank-first flat surface you stand on): (m) Image: Channel (at top of bank-first flat surface you stand on): (m) Image: Channel (at top of bank-first flat surface you stand on): (m) I	15)
Bank Angle:	, < 90°
stream in Active calle partico - 14the to	
No woody stream buffer a grassis/	
Swubs only - riffels trampled by live stoc	K

A channel natural frequent bends					Score
					5
B. channel natural, infrequent bends (chan	nelization cou	ld be old)	•••••••••••••••••••••••••••••	•••••	A
C. some channelization present			•••••••••		3
D. more extensive channelization $>40\%$ o	f stream disru	nted	••••••••••••••••••••••••••••••	••••••	2
E no bends completely channelized or rin	ranned or gal	pioned etc	•••••••	•••••	2
Evidence of dredging DEvidence of desnagging=no.	large woody	lebris in stream	Banks of unifo	rm chana/	oright
marks	large woody (rm snape/i	ubtotal U
				5	ubiotal
Instream Habitat: Consider the percentage of the reach is rocks, 1 type is present, circle the score of 17. D gun to decay (not piles of leaves in pool areas). <u>Mark</u>	each that is far Definition: lea as Rare, Con	vorable for bentho fpacks consist of o umon, or Abundan	s colonization o older leaves that <u>at.</u>	r fish cove are packed	r. If >70% of d together and
Rocks Macrophytes Sticks and leafpa	acks <u>Sna</u>	ags and logs 🔶	_Undercut ban	ks or root	mats
AMOUNT OF REACH FAV	ORABLE F	OR COLONIZA'	FION OR COV	ER	
	>70%	40-70%	20-40%	<20%	
	Score	Score	Score	Score	
4 or 5 types present	20	16	12	8	
3 types present	19	15	11	7	
2 types present	18	14	10	6	
1 type present	17	13	9	5	
/ No types present	0				
No woody vegetation in riparian zone Remark	s few?	mees			Subtotal
Better Colored (1)					Constant in
. Bottom Substrate (silt, sand, detritus, gravel, cob	ble, boulder)	Look at entire re	ach for substrate	scoring, b	out only look a
endeddedness, and use rocks from all parts of riffle-	look for "mud	line" or difficulty	extracting rock	s.	
A. substrate with good mix of gravel, cobble	and boulder	\$			Score
1. embeddedness <20% (very little san	id, usually onl	y behind large bou	ulders)		15
2. embeddedness 20-40%		••••••			12
3. embeddedness 40-80%					8
4. embeddedness >80%					3
B. substrate gravel and cobble					
1. embeddedness <20%					14
					11
2. embeddedness 20-40%					
2. embeddedness 20-40% 3. embeddedness 40-80%					6
 2. embeddedness 20-40% 3. embeddedness 40-80% 4. embeddedness >80% 					6 2
 2. embeddedness 20-40% 3. embeddedness 40-80% 4. embeddedness >80% C. substrate mostly gravel 					6 2
 2. embeddedness 20-40% 3. embeddedness 40-80% 4. embeddedness >80% C. substrate mostly gravel 1. embeddedness <50% 					6 2 8
 2. embeddedness 20-40%					6 2 8 4
2. embeddedness 20-40% 3. embeddedness 40-80% 4. embeddedness >80% C. substrate mostly gravel 1. embeddedness <50% 2. embeddedness >50% D. substrate homogeneous					6 2 8 4
2. embeddedness 20-40% 3. embeddedness 40-80% 4. embeddedness >80% C. substrate mostly gravel 1. embeddedness <50% 2. embeddedness >50% D. substrate homogeneous 1. substrate nearly all bedrock					6 2 8 4 3
2. embeddedness 20-40% 3. embeddedness 40-80% 4. embeddedness >80% C. substrate mostly gravel 1. embeddedness <50% 2. embeddedness >50% D. substrate homogeneous 1. substrate nearly all bedrock 2. substrate nearly all sand					6 2 8 4 3 3
2. embeddedness 20-40% 3. embeddedness 40-80% 4. embeddedness >80% C. substrate mostly gravel 1. embeddedness <50% 2. embeddedness >50% D. substrate homogeneous 1. substrate nearly all bedrock 2. substrate nearly all sand 3. substrate nearly all detrifue					6 2 8 4 3 3 2
2. embeddedness 20-40% 3. embeddedness 40-80% 4. embeddedness >80% C. substrate mostly gravel 1. embeddedness <50% 2. embeddedness >50% D. substrate homogeneous 1. substrate nearly all bedrock 2. substrate nearly all sand 3. substrate nearly all detritus 4. substrate nearly all detritus					6 2 8 4 3 3 2
2. embeddedness 20-40% 3. embeddedness 40-80% 4. embeddedness >80% C. substrate mostly gravel 1. embeddedness <50% 2. embeddedness >50% D. substrate homogeneous 1. substrate nearly all bedrock 2. substrate nearly all sand 3. substrate nearly all detritus 4. substrate nearly all silt/ clay					6 2 8 4 3 3 2 1

A. Tools present	Score
1. Pools Frequent (>30% of 200m area surveyed)	
a. variety of pool sizes	10
b. pools about the same size (indicates pools filling in)	8
2. Pools Infrequent (<30% of the 200m area surveyed)	
a. variety of pool sizes	6
b. pools about the same size	4
B. Pools absent	0
	Subtotal
Pool bottom boulder aphilo-bard N/Pottom conducting a new wells D Site bottom D Some and	and an dand

□ Pool bottom boulder-cobble=hard □ Bottom sandy-sink as you walk □ Silt bottom □ Some pools over wader depth Remarks_____

V. Riffle Habitats

Heror

Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles Fr	equent Riffle Score Sco	s Infrequent
A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream	16 12	
B. riffle as wide as stream but riffle length is not 2X stream width	14 (7)	
C. riffle not as wide as stream and riffle length is not 2X stream width	10 3	
D. riffles absent	0	0
Channel Slope: Typical for area Steep=fast flow Low=like a coastal stream	S	ubtotal
VI. Bank Stability and Vegetation		
FACE UPSTREAM	Left Bank	Rt. Bank
	Score	Score
A. Banks stable		
1. little evidence of erosion or bank failure(except outside of bends), little potential for	erosion 7	7
B. Erosion areas present		
1. diverse trees, shrubs, grass; plants healthy with good root systems		6
2. few trees or small trees and shrubs: vegetation appears generally healthy		5
3. sparse mixed vegetation: plant types and conditions suggest poorer soil binding		3
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high	h flow. (2)	(2)
5 little or no bank vegetation mass erosion and bank failure evident	0	0 1 (
or mate of no built regonation, made erosion and built failure or identification and		Total
Remarks		10111

VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's surface. Canopy would block out sunlight when the sun is directly overhead. Note shading from mountains, but not use to score this metric.

		Score	
	A. Stream with good canopy with some breaks for light penetration	10	
	B. Stream with full canopy - breaks for light penetration absent	8	
	C. Stream with partial canopy - sunlight and shading are essentially equal	7	
	D. Stream with minimal canopy - full sun in all but a few areas	(2)	
	E. No canopy and no shading	0	
			\bigcirc
Remarks	S	Subtotal	2

VIII. Riparian Vegetative Zone Width

Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond floodplain). Definition: A break in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly enter the stream, such as paths down to stream, storm drains, uprooted trees, otter slides, etc.

FACE UPSTREAM	Lft. Bank	Rt. Bank
Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc)	Score	Score
A. Riparian zone intact (no breaks)		1
1. width > 18 meters	05	(5)
2. width 12-18 meters	4	4
3. width 6-12 meters	3	3
4. width < 6 meters	2	2
B. Riparian zone not intact (breaks)		
1. breaks rare		
a. width > 18 meters	4	4
b. width 12-18 meters	3	3
c. width 6-12 meters	2	2
d. width < 6 meters	1	1
2. breaks common		
a. width > 18 meters	3	3
b. width 12-18 meters	2	2
c. width 6-12 meters	1	1
d. width < 6 meters	0	0
Remarks	1	FotalO
	Page Te	otal 23
Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream.	TAL SCOR	E
	/	51)
	(-4/

Heron Nt

Supplement for Habitat Assessment Field Data Sheet

Diagram to determine bank angle:

This side is 45° bank angle.

Site Sketch:

Other comments:	

HERON AT-5

3/06 Revision 6

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams

Biological Assessment Unit, DWQ	TOTAL SCORE 48
Directions for use: The observer is to survey a minimum of 100 meters with 200	meters preferred of stream, preferably in an
upstream direction starting above the bridge pool and the road right-of-way. The	segment which is assessed should represent average
stream conditions. To perform a proper habitat evaluation the observer needs to g	et into the stream. To complete the form, select the
description which best fits the observed habitats and then circle the score. If the o	bserved habitat falls in between two descriptions,
select an intermediate score. A final habitat score is determined by adding the rest	alts from the different metrics.
BETT	TEL SOUTH
Stream <u>NT-5 HERON</u> Location/road: <u>Show Camp</u> (Road Name	FORK KA.)County ALAMANCE
Date 10-2-18 CC# Basin CAPEFEAR BASIN	Subbasin_0303,6002050056
G. LEWIS 03030002	NCDWR 03-06-07
Observer(s) $-$ Kerry Type of Study: \Box Fish \Box Benthos \Box Basinwide \Box Sp	ecial Study (Describe)
Latitude 35,852441 Longitude 79.361152 Ecoregion: MT @P	Slate Belt 🗖 Triassic Basin
Water Quality: Temperature ⁰ C DOmg/l Conductivity (corr	.)µS/cm pH
Physical Characterization: Visible land use refers to immediate area that you out estimate driving thru the watershed in watershed land use.	a can see from sampling location - include what
Visible Land Lies: 8 % Forest 2 % Peridential 90% Ac	tive Pasture % Active Crops
%Fallow Fields % Commercial %Industrial %Ort	her - Describe
	ler - Desenbe
Watershed land use : DForest DAgriculture Urban DAnimal operations up	stream
Width: (meters) Stream 1 -2 Channel (at top of bank) 3 Stream D	epth: (m) Avg 3 Max
□ Width variable □ Large river >25m wide	
Bank Height (from deepest part of riffle to top of bank-first flat surface you stand	d on): (m)
Bank Angle : $\square \square \square$	> 90° indicate slope is towards mid-channel, < 90°
indicate slope is away from channel. NA if bank is too low for bank angle to matt	er.)
L Channelized Ditch	1 (11 1 1 1 1 1 1
Deeply incised-steep, straight banks LBoth banks undercut at bend	nnel filled in with sediment
\Box Recent overbank deposits \Box Bar development \Box Bur	an tinge
Manmade Stabilization: TN DV: DPin ran cement gabions D Sediment/gra	de control structure Berm/levee
Flow conditions : High Normal VII ow	
Turbidity: Clear Clightly Turbid PTurbid Tannic OMilky OColor	red (from dves)
Good notential for Wetlands Restoration Project?? TYES DNO De	tails
Channel Flow Status	
Useful especially under abnormal or low flow conditions.	
A. Water reaches base of both lower banks, minimal channel substrate ex	posed
B. Water fills >75% of available channel, or <25% of channel substrate i	s exposed
C. Water fills 25-75% of available channel, many logs/snags exposed	
D. Root mats out of water	
E. Very little water in channel, mostly present as standing pools	
Weather Conditions: Cloudy - Mid 105 Photos: DN DY Dig	ital 🗆 35mm
Remarks: Stream within roth. miching	Narrow amainal
with Dense Vegetation - NO NOM	ny Weartantin
1.00	and the second s

I Channel Medification	-
1. Channel Modulication	Score
A. channel natural, frequent bends	5
B. channel natural, infrequent bends (channelization could be old)	4
C. some channelization present	35
D. more extensive channelization, >40% of stream disrupted	2
E. no bends, completely channelized or rip rapped or gabioned, etc	0
□ Evidence of dredging □Evidence of desnagging=no large woody debris in stream □Banks of uniform shape/he	ight -
RemarksSut	ototal

II. Instream Habitat: Consider the percentage of the reach that is favorable for benthos colonization or fish cover. If >70% of the reach is rocks, 1 type is present, circle the score of 17. Definition: leafpacks consist of older leaves that are packed together and have begun to decay (not piles of leaves in pool areas). Mark as **Rare**, Common, or Abundant.

	AMOUNT OF REACH FAVO	RABLE F	OR COLONIZA	TION OR COV	ER	
		>70%	40-70%	20-40%	<20%	
		Score	Score	Score	Score	
	4 or 5 types present	20	16	12	8	
	3 types present	19	15	11	7	
	2 types present	18	14	10	6	
	1 type present	17	13	9	5	
	No types present	0				. 0
□ No woody vege	etation in riparian zone Remarks					Subtotal)

III. Bottom Substrate (silt, sand, detritus, gravel, cobble, boulder) Look at entire reach for substrate scoring, but only look at riffle for embeddedness, and use rocks from all parts of riffle-look for "mud line" or difficulty extracting rocks.

A. substrate with good mix of gravel, cobble and boulders

1. embeddedness <20% (very little sand, usually only behind large boulders)	15	-
2. embeddedness 20-40%.	12	
3. embeddedness 40-80%	8	
4. embeddedness >80%	3	
B. substrate gravel and cobble		
1. embeddedness <20%	14	
2. embeddedness 20-40%	11	
3. embeddedness 40-80%	6	
4. embeddedness >80%	2	
C. substrate mostly gravel		
1. embeddedness <50%	.8	
2. embeddedness >50%	4	
D. substrate homogeneous		
1. substrate nearly all bedrock	3	
2. substrate nearly all sand	3	
3. substrate nearly all detritus	2	
4. substrate nearly all silt/ clay	1	16
Remarks	Subtotal	4

IV. Pool Variety Pools are areas of deeper than average maximum depths with little or no surface turbulence. Water velocities associated with pools are always slow. Pools may take the form of "pocket water", small pools behind boulders or obstructions, in large high gradient streams, or side eddies.

1	A. Pools present	Sco	re
	1. Pools Frequent (>30% of 200m area surveyed)		
	a. variety of pool sizes	10	
	b. pools about the same size (indicates pools filling in)	8	
	2. Pools Infrequent (<30% of the 200m area surveyed)		
	a. variety of pool sizes	6	
	b. pools about the same size	(4)	
]	B. Pools absent	0	11
		Subtotal	9
D Poo	ol bottom boulder-cobble=hard 🖾 Bottom sandy-sink as you walk 🗆 Silt bottom 🗖 Some pools over w	ader depth	1

Page Total Z

Score

Remarks

HERON UT-1

V. Riffle Habitats

Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles Frequent Riffle	s Infrequent
Score Sco	ore
A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream 16	
B. riffle as wide as stream but riffle length is not 2X stream width	
C. riffle not as wide as stream and riffle length is not 2X stream width	-
D. riffles absent	3
Channel Slope: Typical for area Steep=fast flow Low=like a coastal stream	ubtotal
VI. Bank Stability and Vegetation	
FACE UPSTREAM Left Bank	Rt. Bank
Score	Score
A. Banks stable	_1
1. little evidence of erosion or bank failure(except outside of bends), little potential for erosion. 7	7/
B. Erosion areas present	
1. diverse trees, shrubs, grass; plants healthy with good root systems	6
2. few trees or small trees and shrubs; vegetation appears generally healthy	5
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding	3
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flow. 2	2
5. little or no bank vegetation, mass erosion and bank failure evident	0 110
	Total
Remarks	1

VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's surface. Canopy would block out sunlight when the sun is directly overhead. Note shading from mountains, but not use to score this metric.

Remarks		Subtotal	0
E. 1	No canopy and no shading	0	
D. 8	Stream with minimal canopy - full sun in all but a few areas	2	
C. S	Stream with partial canopy - sunlight and shading are essentially equal	7	
B. 5	Stream with full canopy - breaks for light penetration absent	8	
A. 5	Stream with good canopy with some breaks for light penetration	10	
		Score	

VIII. Riparian Vegetative Zone Width

Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond floodplain). Definition: A break in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly enter the stream, such as paths down to stream, storm drains, uprooted trees, otter slides, etc.

FACE UPSTREAM	Lft. Bank	Rt. Bank
Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, e	tc) Score	Score
A. Riparian zone intact (no breaks)		~
1. width > 18 meters	3	5 7
2. width 12-18 meters	4	4
3. width 6-12 meters	3	3
4. width < 6 meters	2	2
B. Riparian zone not intact (breaks)		
1. breaks rare		
a. width > 18 meters	4	4
b. width 12-18 meters	3	3
c. width 6-12 meters	2	2
d. width < 6 meters	1	1
2. breaks common		
a. width > 18 meters	3	3
b. width 12-18 meters	2	2
c. width 6-12 meters	1	1
d. width < 6 meters	0	0 1 0
Remarks	Т	otal
	D	1 27
	Page To	tal <u>A</u>
Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream.	TOTAL SCORI	
		49 1
		10
41		

5

Supplement for Habitat Assessment Field Data Sheet

Diagram to determine bank angle:

This side is 45° bank angle.

Site Sketch:

Other comments:	

Appendix G As-built Plan Sheets

/1/2019

			STATE	STATE PRO	DJECT REFERENCE NO.	SHEET NO.	TOTAL SHEETS
			N.C.	HEF	RON SITE	1	
	SHEE	TNUMBER		INDE	X OF SHEET	S	
	01				Title Sheet		
	010				Symbology Sheet		
		RU 17			As-Built Plan and I	Profile Shee	ate
	04 111				As Built Full and I		
)							
	- - - - -	SURVEYORS CERTIF Surveyor's disclair sites, underground However, no visibl the undersigned (o I certify that the su and does not crea	ICATION(S) mer: No atterr d utilities or ar le evidence of other than tho urvey is of an te a new stre	npt was made to loca ny other features abo f cemeteries or utilitie ise shown). existing parcel or par et or change an exist	te any cemeteries, wetlands, we, or below ground other tha s, aboveground or otherwise, rcels of land or one or more ex ing street.	nazardous ma n those showr was observed tisting easeme	terial n. d by ents
		I JOHN A. RUDO survey made unde	<u>LPH</u> , certify er my supervis	that this plat was pre sion, of as-built condi	epared under my supervision f tions.	rom an actual	field
	- -	That the boundarie referenced hereon global navigationa information was us Class of Survey:	es not survey i; That the rat I satellite syst sed: CLASS B	ed are clearly indicat io of precision as cal- tem (GNSS) was use (HORIZONTAL) CL	ed as such and were plotted f culated was <u>1:7,500+</u> ed to perform this survey and t	rom information and that the he following	on as
/		Positional Accurate Type of GPS field	cy: 0.12 feet procedure: 1	(HORIZONTAL) RTK			
·		Dates of survey: <u>F</u> Datum/Epoch: <u>N</u>	Eebruary 2019	9 1)			
≿	¦ ≻	Geoid Model: 2	012B CONUS	5 90680 GROUND TO	GRID		
Š	Ŋ	Units: US SURV	EY FEET				
8	; 8	That this plat mee Carolina. Witness	ts the require my hand and	ments of the standar I seal this <u>02</u> da	ds of practice for land surveyi y of <u>May</u> , 2019	ng in North	
Щ	ΪŞ		ми <i>н</i> л,				
AAN A	- HT	IN ORTH	CARO	5/31/2	2019		
₹	HA	Nº 20	N N N N N N N N N N N N N N N N N N N				
∢	0		EAL 4194 م		Signed by:		
		OTHERS	URVE O	Adus	Rudalol		
	j	ASHL	EY RUD	s jour	naoyu	Ŀ	4194
	í I		IIIII.	-1C9D7	Professional Land Surveyor	Licen	se Number
		LI. 7.	MITS 8 AC	OF CO RES	NSTRUCTIO	N:	
_				U	DOCUMENT NOT CON	SIDERED F	-INAL LETED
	İ						
	:				DocuSigned by;	ARO	·
Υ		Prepared in i	the Office	of:	Joslo Daltoi		.'', N'',
	SUN	GATE DESI	GN GR	OUP, P.A.	1089AD8C14994	сз V	T I
		905 J	ONES FRANK	LIN ROAD	E E SE	ALZ	1111
		RALE TEL (S	IGH, NORTH (919) 859-2243 FIRM LICENSE	CAROLINA 27606 E NO. C-890	E E 269	97	ш <i>и,</i>
-					E EXVOI	NEER	
						11. 11. 10 11. 11. 11. 11. 11. 11. 11. 11. 11. 11.	5,11
					////UA G	DAL	<i>''''</i>
		IOSHUA G. PROJECT	DALTON ENGINEER	<u>N, P.E.</u>	5/31/20	19	

DATE

CONVENTIONAL Note: Not to Scale PLAN *S.U.E. = SHEET SYMBOLS Subsurface Utility Engineering

BOUNDARIES AND PROPERTY:

State Line	
County Line	
Township Line	
City Line	
Reservation Line	·
Property Line	
Existing Iron Pin	 EIP
Computed Property Corner	
Property Monument	ECM
Parcel/Sequence Number	- (23)
Existing Fence Line	
Proposed Woven Wire Fence	
Proposed Chain Link Fence	
Proposed Barbed Wire Fence	
Existing Wetland Boundary	—————————————————————
Proposed Wetland Boundary	WLB
Existing Endangered Animal Boundary	EAB
Existing Endangered Plant Boundary	EPB
Existing Historic Property Boundary	— — нрв — — — — — — — — — — — — — — — — — — —

BUILDINGS AND OTHER CULTURE:

Gas Pump Vent or U/G Tank Cap	0
Sign ———	⊙ s
Well ———	Ŵ
Small Mine	${\sim}$
Foundation ————	
Area Outline	
Cemetery	†
Building ———	
School ———	
Church ———	
Dam	

HYDROLOGY:

Stream or Body of Water		
Hydro, Pool or Reservoir ————		
Jurisdictional Stream	—	
Buffer Zone 1		- BZ 1 ———
Buffer Zone 2		- BZ 2
Flow Arrow	~ 	
Disappearing Stream	>	
Spring	0	\sim
Wetland		\star
Proposed Lateral, Tail, Head Ditch ———	\geq	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

RIGHT OF WAY & PROJECT CONTROL: ♦

Secondary Horiz and Vert Control Point -----Primary Horiz Control Point — Primary Horiz and Vert Control Point -

Exist Permanent Easment Pin and Cap ———	\diamond
New Permanent Easement Pin and Cap ——	\bigotimes
Vertical Benchmark	
Existing Right of Way Marker	\bigtriangleup
Existing Right of Way Line	
New Right of Way Line	
New Right of Way Line with Pin and Cap —	- (k)
New Right of Way Line with Concrete or Granite RW Marker	
New Control of Access Line with Concrete C/A Marker	
Existing Control of Access	
New Control of Access	
Existing Easement Line	— — E — —
New Conservation Easement	E
New Temporary Drainage Easement	TDE
New Permanent Drainage Easement	PDE
New Permanent Drainage / Utility Easement	
New Permanent Utility Easement	PUE
New Temporary Utility Easement	TUE
New Aerial Utility Easement	AUE

ROADS AND RELATED FEATURES:

Existing Edge of Pavement	
Existing Curb	
Proposed Slope Stakes Cut	<u>C</u>
Proposed Slope Stakes Fill	F
Proposed Curb Ramp	CR
Existing Metal Guardrail ————	<u> </u>
Proposed Guardrail ————————	<u> </u>
Existing Cable Guiderail	
Proposed Cable Guiderail	
Equality Symbol	\oplus
Pavement Removal	\boxtimes
VEGETATION:	
Single Tree	භි
Single Shrub	¢

	¢	1	
 ~~~~	~~~~	~~~~	~~~~
 <u>ـــبْ</u> بَــ	ഹ	ഹാപ	ഹാപ
 ÷	ු	ප	÷
	Viney	ard	

# **EXISTING STRUCTURES:**

Hedge -

 $\bigcirc$ 

۲

Woods Line — Orchard —— Vineyard ——

MAJOR:	
Bridge, Tunnel or Box Culvert	CONC
Bridge Wing Wall, Head Wall and End Wall-	) CONC WW (
MINOR: Head and End Wall	CONC HW

Pipe Culvert	
Footbridge	
Drainage Box: Catch Basin, DI or JB	
Paved Ditch Gutter	·
Storm Sewer Manhole	S
Storm Sewer	s-
UTILITIES:	
POWER:	
Existing Power Pole	- 6
Proposed Power Pole	- 6
Existing Joint Use Pole	•
Proposed Joint Use Pole	6
Power Manhole	- ®
Power Line Tower	- 🛛
Power Transformer	- 🗹
U/G Power Cable Hand Hole	_
H-Frame Pole	- •
U/G Power Line LOS B (S.U.E.*)	— — — — P-
U/G Power Line LOS C (S.U.E.*)	— — — P
U/G Power Line LOS D (S.U.E.*)	— <u> </u> Р-
TELEPHONE:	
Existing Telephone Pole	•
WATER:	
Water Manhole	- W
Water Meter	- 0
Water Valve	- 🛛
Water Hydrant	- ©
U/G Water Line LOS B (SU F*)	*
U/G Water Line LOS C (S.U.E*)	
U/G Water Line LOS D (S.U.E*)	w
Above Ground Water Line	A/G W

## GAS:

Gas Valve	- ♦
Gas Meter	- \$
U/G Gas Line LOS B (S.U.E.*)	
U/G Gas Line LOS C (S.U.E.*)	
U/G Gas Line LOS D (S.U.E.*)	c—
Above Ground Gas Line	A/G Go
SANITARY SEWER:	
Sanitary Sewer Manhole	•
Sanitary Sewer Cleanout	- ÷
U/G Sanitary Sewer Line	ss
Above Ground Sanitary Sewer	A/G Sanitary

	C	SHEET NAME	S	
	PROJECT NAME: HE	RON STREAM AND	WETLAND RESTORA	TION SITE
		COUNTY: ALA	AMANCE DATI	E: 20/9
		SUNGATE		DUP, P.A
			905 JONES FRANKLI RALEIGH, NORTH C/ TEL (919) 859-2243	N ROAD AROLINA 27606
	Axiom Environmental, Inc		ENG FIRM LICENSE	NO. C-890
SS Forced	Main Line LOS B	(S.U.E.*) —	— — — FSS –	
SS Forced	Main Line LOS C	C (S.U.E.*) ——	FSS -	
SS Forced	Main Line LOS D	) (S.U.E.*) —	FSS	
MISCELLANE	OUS:			
Utility Pole			•	
Utility Pole	with Base ——			
Utility Loca	ted Object ——			
Utility Traff	ic Signal Box ——		§	
Utility Unkr	nown U/G Line L	OS B (S.U.E.*)		
U/G Tank;	Water, Gas, Oil –			]
Undergrour	nd Storage Tank,	Approx. Loc. —	( <u>UST</u> )	-
A/G Tank;	Water, Gas, Oil –			]
Geoenviron	mental Boring —		_ 🍒	_
U/G Test H	lole LOS A (S.U.E	.*)	— •	
Abandoned	According to Ut	, ilitv Records —	ـــــــــــــــــــــــــــــــــــــ	IR
End of Info	rmation	,	— E.O	.l.
AS_RIVII	<i>T</i> .			
Stream Gr			_	
Groundwat	er Gauge		# 🗖	
Benthic &	Water Quality Sta	tion	_ 1	
				,
Origin Poir	n on CVS Plots		_ V	
CVC Plate				
CV3 PIOTS			_   #	
Cross Section	on		—— XS	5-10R
Adjusted St	tream Structure			
			7	L
Not Constru	ucted		$\sim$	•
				•
Riffle Rip R	lap		jesj%jesj%jes 	9683%68 260260
-			<u></u>	৽৻ৼঽ৾৾৾৻ৼ৾৾৽
Adjusted E	asement		E -	












5/1/2019 Heron_p











DocuSign Envelope ID: C8A88BB5-7902-44A2-8037-73A242D6B444











June 3, 2019

NC IRT C/O Ms. Lindsay Crocker NC DEQ – Division of Mitigation Services 1652 Mail Service Center Raleigh, North Carolina 27699-1652

Subject: Formal Request to Modify Heron Mitigation Site Assets USACE Action ID No. SAW-2017-01471 DWR No. 17-0290 RFP No. 16-006990 Mitigation Plan Assets—5,264 SMU Amended Mitigation Plan Assets—5,293 SMU

Construction changes during As-Built provided an additional 29 SMUs from Mitigation Plan. Deviations from the construction plans included realignment of UT 1B (adding 20 linear feet to the alignment) due to conflicts with a gas line crossing. The realignment resulted in the reduction of a log vane and alterations to pipe configurations within the crossing. Gas line realignment also affected the length of UT 2 in its lower reaches (shortening the Restoration reach). UT 2 also has minor deviations in the enhancement II reach due to profile elevation alterations to tie to the invert of UT 1B. These profile alterations were included in construction plans, but not included in table updates of the detailed plan. Profile alterations resulted in the Enhancement (level II)/Restoration initiation point migrating upstream, and thus the length of the Enhancement (Level II) reach (UT 2A) decreased by 39 feet, and the length of the restoration reach (UT 2B) increased by 17 feet.

Minor easement deviations after construction plan development resulted in some stationing changes, most notable at the upper reaches of UT 1A (adding 5 linear feet to the alignment) and UT 8A & UT8B (reducing the alignments by a total of 4 linear feet). The easement variations also affected channel lengths across gas lines, which do not generate mitigation credit. Eight log cross-vanes were not constructed due to contact with bed rock, or conflicts with the gas line. In addition, a marsh treatment area was added to the right bank of UT 6 at a draw that was concentrating surface drainage and scouring the valley walls. No other deviations of significance occurred between construction plans and the as-built condition. In addition, no issues have arisen since construction occurred. Revised Asset Table is attached.

Thank you,

F.NL

Worth Creech

Reach ID	Stream Stationing/ Wetland Type	Existing Footage/ Acreage	Mitigation Plan Footage/ Acreage	Restoration Footage/ Acreage	Restoration Level	Restoration or Restoration Equivalent	Mitigation Ratio	Mitigation Credits	Comment
UT 1A	(-)0+05 to 04+70	475	470	475	Enhancement (Level I)	475	1.5:1	317	
UT 1B	04+70 to 13+26	753	836	856	Restoration	856-57= <b>799</b>	1:1	799	57 lf of UT1 is located outside of the conservation easement and therefore is not generating credit
UT 2A	00+00 to 03+04	304	343	304	Enhancement (Level II)	304	2.5:1	122	
UT 2B	03+04 to 03+67	19	46	63	Restoration	63	1:1	63	
UT 3	00+00 to 02+79	269	279	279	Restoration	279	1:1	279	
UT 4	00+00 to 04+50	485	450	450	Restoration	450	1:1	450	
UT 5A	00+00 to 09+52	422	952	952	Restoration	952-52= <b>900</b>	1:1	900	52 If of UT5 is located outside of the conservation easement and therefore is not generating credit
UT 5B	09+52 to 14+90	538	538	538	Enhancement (Level II)	538	2.5:1	215	
UT 6	00+00 to 07+81	683	781	781	Restoration	781	1:1	781	
UT 7A	00+00 to 02+32	0	232	232	Restoration	232-41= 191	1:1	191	41 If of the UT7 restoration reach is located outside of the conservation easement and therefore is not generating credit
UT 7B	02+32 to 09+96	764	764	764	Enhancement (Level I)	764-55= <b>709</b>	1.5:1	473	55 If of the UT7 enhancement reach is located outside of the conservation easement and therefore is not generating credit
UT8A	00+04 to 06+09	549	607	605	Restoration	605	1:1	605	
UT 8B	06+09 to 08+57	248	250	248	Enhancement (Level II)	248	2.5:1	99	
Wetland R	Riparian Riverine		0.35	0.35	Restoration	0.35	1:1	0.35	Wetland Restoration
Wetland E	Riparian Riverine	0.61	0.61	0.61	Enhancement	0.61	2:1	0.31	Wetland Enhancement

## Table 1. Project Components and Mitigation CreditsHeron Restoration Site

Asbuilt Baseline Monitoring Report (Project No. 100014) Heron Stream and Wetland Restoration Site Alamance County, North Carolina page 2 Restoration Systems, LLC May 2019